Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
E đối xứng với H qua AB
=> AB là đường trung trực của EH
=> BE = BH (1)
F đối xứng với H qua AC
=> AC là đường trung trực của HF
=> CH = CF (2)
Từ (1); (2 ) => BC = BH + CH = BE + CF
Đề có vẻ thừa dữ kiện:
$E$ đối xứng với $H$ qua $AB$, suy ra $AB$ là trung trực của $EH$
$\Rightarrow BE=BH(1)$
$F$ đối xứng với $H$ qua $AC$, suy ra $AC$ là trung trực của $FH$
$\Rightarrow CF=CH(2)$
Từ $(1);(2)\Rightarrow BE+CF=BH+CH=BC$ (đpcm)
a) Vì E đối xứng với H qua AB nên EH là trung trực của AB
nên \(\Delta AEH\) cân tại A
=> AE = AH (1)
F đối xứng vs H qua AC nên FH là trung Trực của AC
=> \(AF=AH\left(2\right)\)
Từ (1) và (2) => AE = EF hay A là trung điểm của EF
b)Vì E đối xứng với H qua AB nên EH là trung trực của AB
nên \(\Delta BEH\) cân tại B
=> BE = BH
CMTT : FC = HC
Có BH + HC = BC
mà BH = BE ; FC = HC
=> BE + FC = BC
a: Ta có: H và E đối xứng nhau qua BA
nên AB là đường trực của HE
Suy ra: AH=AE
hay ΔHAE cân tại H
1: Ta có: D và H đối xứng nhau qua AB
nên AB là đường trung trực của DH
Suy ra: AH=AD
Xét ΔAHD có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh đáy HD
nên AB là tia phân giác của \(\widehat{HAD}\)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AE=AH
Xét ΔAEH có AE=AH
nên ΔAEH cân tại A
mà AC là đường trung trực ứng với cạnh đáy HE
nên AC là tia phân giác của \(\widehat{EAH}\)
Ta có: \(\widehat{DAE}=\widehat{EAC}+\widehat{HAC}+\widehat{HAB}+\widehat{DAB}\)
\(=2\cdot\left(\widehat{HAC}+\widehat{HAB}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra: D,A,E thẳng hàng
mà AE=AD(=AH)
nên A là trung điểm của DH
2: Ta có: DE=AD+AE
nên DE=AH+AH
hay DE=2AH
a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác
Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác
Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)
Do đó B,H,D thẳng hàng
Mà \(DH=DE=DB\) (DHE và DEB cân tại D)
Vậy D là trung điêm BH
(Tự vẽ hình)
a) +) Gọi M là giao của AB và HE, N là giao của AC và HF.
+) Vì H đối xứng với E qua AB nên ME = MH.
+) Hai tam giác AME và AMH có:
+) AM chung
+) ME = MH (c/m trên)
+) \(\widehat{AME}=\widehat{AMH}=90^o\)
\(\Rightarrow\Delta AME=\Delta AMH\left(c.g.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}AE=AH\left(1\right)\\\widehat{MAE}=\widehat{MAH}\left(2\right)\end{matrix}\right.\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}AF=AH\left(3\right)\\\widehat{NAF}=\widehat{NAH}\left(4\right)\end{matrix}\right.\)
+) Từ (1), (3) \(\Rightarrow AE=AF\) (*)
+) Từ (2), (4) \(\Rightarrow\widehat{EAF}=2\left(\widehat{MAH}+\widehat{NAH}\right)=2\widehat{MAN}=180^o\) (**)
+) Từ (*) và (**) \(\Rightarrow\) A là trung điểm của đoạn thẳng EF
b) Dễ thấy \(\Delta BME=\Delta BMH\left(c.g.c\right)\Rightarrow BE=BH\)
Tương tự, CF = CH
Do đó BC = BH + CH = BE + CF
* Chú ý: Vì \(\widehat{ABC},\widehat{ACB}< 90^o\) nên H nằm giữa B và C, do đó BH + CH = BC