\(\Delta ABC\) vuông tại A. Điểm E \(\in\) AC. Kẻ 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

ac=fa

20 tháng 6 2019

Bài này làm hẳn ra dài lắm -,- làm tắt xíu nha

Hình chữ nhật EHFA => EH = AF ; EA = HF (thay vô chỗ nào trong bài thì tự nhìn nhé)

A B C H E F

a,Theo hệ thức lượng trong tam giác vuông ta có

\(\frac{c^3}{b^3}=\frac{AB^3}{AC^3}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{BH.BC}{CH.BC}.\frac{AB}{AC}=\frac{BH.AB}{CH.AC}=\frac{BH.\frac{BH.HA}{HE}}{CH.\frac{AH.HC}{HF}}\) 

                         \(=\frac{BH^2.HA.HF}{CH^2.HA.HE}=\frac{BH^2.HF}{CH^2.HE}=\frac{BE.BA.HF}{CF.CA.HE}\)

                          \(=\frac{m}{n}.\frac{BA.HF}{CA.HE}=\frac{m}{n}.\frac{BA.AE}{CA.AF}=\frac{m}{n}.\frac{AH^2}{AH^2}=\frac{m}{n}\left(dpcm\right)\)

\(b,m^2+n^2+3h^2=BE^2+CF^2+3AH^2\)

                                    \(=BE^2+CF^2+AH^2+AH^2+AH^2\)

                                    \(=BE^2+CF^2+AH^2+\left(AB^2-BH^2\right)+\left(AC^2-CH^2\right)\left(Py-ta-go\right)\)

                                      \(=\left(AB^2+AC^2\right)+\left(BE^2+CF^2+AH^2-BH^2-CH^2\right)\)

                                     \(=BC^2+\left[BE^2+CF^2+AH^2-\left(BE^2+EH^2\right)-\left(HF^2+FC^2\right)\right]\)

                                     \(=a^2+\left(AH^2-EH^2-HF^2\right)\)

                                    \(=a^2+\left(AH^2-EH^2-EA^2\right)\)

Theo Pytago \(AH^2=EH^2+EA^2\)nên \(m^2+n^2+3h^2=a^2+\left(AH^2-EH^2-EA^2\right)=a^2\)

\(c,\)chưa ra :P

16 tháng 7 2019
https://i.imgur.com/rZaWUiN.jpg
16 tháng 7 2019
https://i.imgur.com/xKRWYKh.jpg