Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc HBA chung
=>ΔHBA đồng dạng với ΔABC
b; Xét ΔABE vuông tại A và ΔACB vuông tại A có
góc ABE=góc ACB
=>ΔABE đồng dạng với ΔACB
=>AB/AC=AE/AB
=>AB^2=AE*AC
c: Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
góc HBD=góc ABE
=>ΔBHD đồng dạng với ΔBAE
Cho tam giác ABC vuông tại A đường cao AH
a) CM tam giác AHB đồng dạng tam giác CAB
b) Vẽ đường phân giác góc ABH cắt AH tại F, AC tại E. CM AF.EB=AF.FB
c) Đường thẳng qua C và song song với BE cắt AH tại K.CM AF2=FH.FK
BÀI LÀM
a) Xét \(\Delta AHB\)và \(\Delta CAB\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{ABC}\) CHUNG
Suy ra: \(\Delta AHB~\Delta CAB\)
a: Xét ΔCDH vuông tại D và ΔCBA vuông tại B có
góc BCA chung
Do đó: ΔCDH\(\sim\)ΔCAB
b: Xét ΔABC vuông tại B và ΔADE vuông tại D có
góc DAE chung
Do đo: ΔABC\(\sim\)ΔADE
Suy ra: AB/AD=AC/AE
hay \(AB\cdot AE=AD\cdot AC\)
c: Xét ΔCFA vuông tại F và ΔCDE vuông tại D có
góc DCE chung
Do đo: ΔCFA\(\sim\)ΔCDE
Suy ra: CF/CD=CA/CE
hay CF/CA=CD/CE
Xét ΔCFD và ΔCAE có
CF/CA=CD/CE
góc FCD chung
Do đó: ΔCFD\(\sim\)ΔCAE
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABC vuông tại A
mà AH là đường cao
nên HA^2=HB*HC
c: AI/IH=BA/BH
EC/AE=BC/BA
mà BA/BH=BC/BA
nên AI/IH=EC/AE
=>AI*AE=IH*EC