K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

lấy k là trung điểm của AB nên  có Ek là đtb của tam giác ABC => Ek // BC và Ek = 1/2BC

k là trđ của AB => Ak = 1/2AB mà AD = 1/2AB => AD = 1/2Ak => D là trđ của Ak

có E là trđ của AC nên DE là đtb của tam giác AkC => DE // kC

từ đó cm đc kefc là hbh 

=> ke = cf

mà ke = 1/2 bc

=> cf = 1/2bc

17 tháng 5 2022

ok

 

 

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm

14 tháng 1 2018

A B D C F E

Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)

Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)

Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0