K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Cho t/giác ABC , kẻ AH vuông BC . Ở phía ngoài t/giác ABC vẽ các tam giác vuông cân tại A là t/giác ABD và t/giác ACE . Kẻ DM , EN vuông với AH . Chứng minh DM = EN

9 tháng 4 2016

D B C E N M A H

                                          a,   có góc ADM+DAM=90độ

                                             có góc DAM+DAB+BAH=90độ

                                             =>DAM+BAH=90 độ=>BAH=ADM

có DAM+ADM=90 độ

có BAH+ABH=90 độ

mà ADM=BAH=>ABH=DAM

xét tg DAM và tg BAH

     AB=AD

góc ADM=BAH     => tg DAM=tg ABH(g.c.g)

góc DAM=ABH

=> DM=AH(2 cạnh t/ứ)

b, nối D,E 

 xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE

gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)

Xét tg MDT và tg NET

NE=DM

NET=TDM(2 góc kia = nhau thì góc này =)                        => tgMTD=tgNET(g.c.g)

ENT=DMT(=90 độ)

=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE

c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)

DA=BA(2),     CA=EA(3)

từ 1,2 3 => 2 tg đó = nhau

12 tháng 11 2021

a) Xét tam giác ABC và ADE vuông tại A

+) AB=AD

+) AC=AE

=> tam giác ABC bằng tam giác ADE

=> BC= DE

b)

TA có tam giác ABD và ACE đều vuông cân tại A

=> góc ABD = ADB= ACE=AEC = 45

=> BD//CE (có 2 góc so le trong bằng nhau)

c) Gọi đường NA cắt MC tại I

Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A

=> A là trực tâm tam giác NMC

=> CA là đường cao thứ ba

=> CA ⊥ MN

d)

Ta chứng minh được tam giác ADM và AME cân tại M

Suy ra MD=MA và MA=ME
=> MD=ME=MA

=> MA=DE/2

 

 

 

image 
12 tháng 11 2021

Cậu ơi nhầm đề bài rùi:))

30 tháng 7 2019

Ta có: ∠(BAH) +∠(BAD) +∠(DAM) =180o(kề bù)

Mà ∠(BAD) =90o⇒∠(BAH) +∠(DAM) =90o(1)

Trong tam giác vuông AMD, ta có:

∠(AMD) =90o⇒∠(DAM) +∠(ADM) =90o(2)

Từ (1) và (2) suy ra: ∠(BAH) =∠(ADM)

Xét hai tam giác vuông AMD và BHA, ta có:

∠(BAH) =∠(ADM)

AB = AD (gt)

Suy ra: ΔAMD= ΔBHA(cạnh huyền, góc nhọn)

Vậy: AH = DM (hai cạnh tương ứng) (3)