Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho t/giác ABC , kẻ AH vuông BC . Ở phía ngoài t/giác ABC vẽ các tam giác vuông cân tại A là t/giác ABD và t/giác ACE . Kẻ DM , EN vuông với AH . Chứng minh DM = EN
a, có góc ADM+DAM=90độ
có góc DAM+DAB+BAH=90độ
=>DAM+BAH=90 độ=>BAH=ADM
có DAM+ADM=90 độ
có BAH+ABH=90 độ
mà ADM=BAH=>ABH=DAM
xét tg DAM và tg BAH
AB=AD
góc ADM=BAH => tg DAM=tg ABH(g.c.g)
góc DAM=ABH
=> DM=AH(2 cạnh t/ứ)
b, nối D,E
xét tg NEA và tg AHC giống ý a, rùi có NE=AH mà DM=AH => DM=NE
gọi giao điểm của DE và NA là T => NTE=DTM(đối đỉnh)
Xét tg MDT và tg NET
NE=DM
NET=TDM(2 góc kia = nhau thì góc này =) => tgMTD=tgNET(g.c.g)
ENT=DMT(=90 độ)
=> DT=ET(2 cạnh t.ứ)=> MN đi qua trung điểm của DE
c, có EAC=DAB(=90độ)=> EAC+BAC=DAB+BAC(1)
DA=BA(2), CA=EA(3)
từ 1,2 3 => 2 tg đó = nhau
a) Xét tam giác ABC và ADE vuông tại A
+) AB=AD
+) AC=AE
=> tam giác ABC bằng tam giác ADE
=> BC= DE
b)
TA có tam giác ABD và ACE đều vuông cân tại A
=> góc ABD = ADB= ACE=AEC = 45
=> BD//CE (có 2 góc so le trong bằng nhau)
c) Gọi đường NA cắt MC tại I
Xét tam giác NMC có 2 đường cao MH và NI cắt nhau tại A
=> A là trực tâm tam giác NMC
=> CA là đường cao thứ ba
=> CA ⊥ MN
d)
Ta chứng minh được tam giác ADM và AME cân tại M
Suy ra MD=MA và MA=ME
=> MD=ME=MA
=> MA=DE/2
Ta có: ∠(BAH) +∠(BAD) +∠(DAM) =180o(kề bù)
Mà ∠(BAD) =90o⇒∠(BAH) +∠(DAM) =90o(1)
Trong tam giác vuông AMD, ta có:
∠(AMD) =90o⇒∠(DAM) +∠(ADM) =90o(2)
Từ (1) và (2) suy ra: ∠(BAH) =∠(ADM)
Xét hai tam giác vuông AMD và BHA, ta có:
∠(BAH) =∠(ADM)
AB = AD (gt)
Suy ra: ΔAMD= ΔBHA(cạnh huyền, góc nhọn)
Vậy: AH = DM (hai cạnh tương ứng) (3)