\(\Delta ABC\) ngoại tiếp đường tròn (I). Một đường tròn qua B, C cắt BI, CI lần tại...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

A B C I I I I I I D E F G J K L c b a b' c'

Bổ đề: Xét tam giác ABC có tâm nội tiếp I, J là tâm bàng tiếp góc A. Từ I và J hạ IH,JK vuông góc BC, L là đối xứng của H qua I.

Khi đó:    i) BK = CH                         ii) A,L,K thẳng hàng                              (Tự chứng minh)

Quay trở lại bài toán:

Gọi I là tâm nội tiếp \(\Delta\)ABC, (I) tiếp xúc BC,CA,AB tại D,E,F. Ia;Ib;Ic thứ tự là tâm bàng tiếp các góc A,B,C

Hạ IaG vuông góc BC, J là đối xứng của D qua I. Ib' và Ic' lần lượt là tâm của (wb') và (wc').

Ta có hai điểm Ib và Ib' đối xứng nhau qua trung điểm cạnh AC nên AIbCIb' là hình bình hành

Do đó hình chiếu của Ib và Ib' đối xứng nhau qua trung điểm AC. Theo Bổ đề i) thì (wb') tiếp xúc AC tại E

Tương tự (wc') tiếp xúc với AB tại F. Khi đó PA/(Wb') = PA/(I) = PA/(Wc') suy ra A thuộc trục đẳng phương của (wb'), (wc')  (1)

Gọi EJ cắt lại (wb') tại K; FJ cắt lại (wc') tại L. Ta thấy EJ vuông góc DE // CIb // AIb' từ đây suy ra AK là tiếp tuyến của (wb')

Tương tự AL là tiếp tuyến của (wc'). Từ đó bốn điểm K,L,E,F đồng viên. Do vậy PJ/(Wb') = JE.JK = JF.JL = PJ/(Wc') 

Suy ra J nằm trên trục đẳng phương của (wb') và (wc')    (2)

Từ (1) và (2), kết hợp với Bổ đề ii) ta thu được AG là trục đẳng phương của (wb') và (wc')

Chú ý rằng G là hình chiếu của Ia lên BC nên AB + BG = AC + CG = p. Vậy có ĐPCM.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

22 tháng 4 2017

Đường tròn tâm O(a,b)

\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)

\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)

Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)

Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt

\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)

Lấy [(1) nhân 5] trừ [(2) chia 2]

\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ

\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)

(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

\(C\left(M;R\right)\) đi qua \(F_2\Rightarrow MF_2=R\) (1)

\(C\left(M;R\right)\) tiếp xúc trong với \(C_1\left(F_1;2a\right)\Rightarrow MF_1=2a-R\) (2)

(1) + (2) cho \(MF_1+MF_2=2a\)

Vậy M di động trên elip (E) có hai tiêu điểm là \(F_1,F_2\) và trục lớn \(2a\)

9 tháng 4 2017

a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1

Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)

b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)

14 tháng 4 2020

câu a có đường thẳng d