Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
tra loi:
, Xét hai tam giác AMC và tam giác BME, ta có:
AM=ME (giả thiết)
góc BME= góc AMC (2 góc đối đỉnh)
BM=MC (M là trung điểm của BC)
Suy ra: tam giác AMC= tam giác BME (c.g.c)
=> AC=BE (hai cạnh tương ứng) (ĐPCM)
=>góc MAC= góc MEB (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)
b, Xét tam giác AMI và tam giác EMK, ta có:
KE=AI (giả thiết)
góc CAM= góc EMK(chứng minh trên)
AM=Me ( giả thiết)
Suy ra: tam giác AMI= tam giác EMK(c.g.c)
=> góc AMI= góc EMK (2 góc tương ứng)
Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)
Do đó: góc IME+ góc EMK= 180 độ
Hay 3 điểm I,M,K thẳng hàng (ĐPCM)
c, Vì góc HME là góc ngoài của tam giác BME nên:
HME= MBE+ MEB
= 50 độ+ 25 độ
= 75 độ
Xét tam giác vuông có H1= 90 độ, ta có
HME+HEM= 90 độ
=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ
Theo định lí tổng 3 góc trong tam giác BME, ta có:
BME+ MBE+ BEM= 180 độ
=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ .
Vậy HEM=15 độ
BME= 105 độ
Tick mình nhá
cho tam giác ABC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm E sao cho ME=MA . chứng minh rằng:
a)AC=EB và AC//BE
b) gọi I là một điểm trên AC , K là một điểm trên EB sao cho AI=EK . Chứng minh ba điểm I,M,K thẳng hàng.
a.Xét tam giác AMH và tam giác NMB có
MA = MN [ gt ]
góc AMH = góc NMB [ đối đỉnh ]
HM = BM [ gt ]
Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]
\(\Rightarrow\)góc AHM = góc NBM
mà bài cho góc AHM = 90độ
\(\Rightarrow\)góc NBM = 90độ
Vậy NB vuông góc với BC
b.Theo câu a ; tam giác AMH = tam giác NMB
\(\Rightarrow\)AH = NB [ cạnh tương ứng ]
Mặt khác ; Xét tam giác AHB vuông tại H có
AB lớn hơn AH
\(\Rightarrow\)AB lớn hơn NB
a: Xét tứ giác ABFC có
N là trung điểm của AF
N là trung điểm của BC
Do đó: ABFC là hình bình hành
Suy ra: AC//BF và AC=BF
b: Xét tứ giác AIFK có
KF//AI
KF=AI
Do đó: AIFK là hình bình hành
Suy ra: Hai đường chéo FA và IK cắt nhau tại trung điểm của mỗi đường
hay I,N,K thẳng hàng