Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEMD có
AE//MD
AD//ME
DO đó: AEMD là hình bình hành
Suy ra: góc BAC=góc EMD
b: Sửa đề: CM góc A+góc AEM=180 độ
Ta có: EM//AD
nên góc AEM+góc A=180 độ(hai góc trong cùng phía)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C M E D 1 2 3 4 1 2
+) ME // AC => góc C = góc M1 ( 2 góc đồng vị) và góc A2 = M2 (2 góc SLT)
+) MD // AB => góc B = góc M4 ( 2 góc đồng vị) và góc A1 = góc M3 ( 2 góc SLT)
=> góc A + góc B + góc C = góc A1 + A2 + B + C = M3 + M2 + M1 + M4 = góc BMC = 180o
Vậy.............
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
A B C D E M N I 1 2 1
(Hình ảnh chỉ mang tính chất minh họa)
a, Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{B1}=\widehat{C2}\left(1\right)\)
Mà: \(\widehat{C2}=\widehat{C1}\left(đ.đỉnh\right)\left(2\right)\)
Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{B1}=\widehat{C1}\)
Xét \(\Delta MDB\) và \(\Delta NCE\) vuông tại \(D;E\) có:
\(BD=CE\left(gt\right)\)
\(\widehat{B1}=\widehat{C1}\left(cmt\right)\)
\(\Rightarrow\Delta MDB=\Delta NEC\left(cgv-gnk\right)\)
\(\Rightarrow MD=NE\left(2c.t.ứng\right)\)
b, Ta có: \(\hept{\begin{cases}MD\perp BE\\NE\perp BE\end{cases}\Rightarrow MD//NE}\)
\(\Rightarrow\widehat{ENI}=\widehat{DMI}\left(so-le-trong\right)\)
Xét \(\Delta IMD\) và \(\Delta INE\) vuông tại \(D;E\) có:
\(DM=EN\left(cmt\right)\)
\(\widehat{IMD}=\widehat{INE}\left(cmt\right)\)
\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gnđ\right)\)
\(\Rightarrow ID=IE\left(2c.t.ứ\right)\)
\(\Rightarrow I\) là trung điểm của \(DE\left(đpcm\right)\)
P/s: Sửa đề câu a, Chứng minh \(MD=NE\)
Sửa đề câu a thành : Chứng minh: MD = NE
ABCDINEM==
GT | △ABC (AB = AC). D BC ; BD = CE DM ⊥ BC (M AB) ; EN ⊥ BC MN ∩ DE = { I } |
KL | a, MD = ME b, ID = IE |
Bài giải:
a, Vì △ABC có AB = AC => △ABC cân tại A => ABC = ACB
Mà ACB = ECN (2 góc đối đỉnh)
=> ABC = ECN
Xét △MDB vuông tại D và △NEC vuông tại E
Có: MBD = NCE (cmt)
BD = EC (gt)
=> △MDB = △NEC (cgv-gnk)
=> MD = NE (2 cạnh tương ứng)
b, Xét △MDI vuông tại D có: DMI + MID = 90o
Xét △IEN vuông tại E có: INE + EIN = 90o
Mà MID = EIN (2 góc đối đỉnh)
=> DMI = INE
Xét △MDI vuông tại D và △NEI vuông tại E
Có: MD = NE (cmt)
DMI = INE (cmt)
=> △MDI = △NEI (cgv-gnk)
=> ID = IE (2 cạnh tương ứng)
Và I nằm giữa D, E
=> I là trung điểm của DE
a) BAC = EMD
c) Chứng minh tổng 3 góc trong 1 tam giác