\(\Delta\) ABC một điểm M bất kì nằm trên cạnh BC tử M kẻ các đường thẳng MD//AB,ME//...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMD có

AE//MD

AD//ME

DO đó: AEMD là hình bình hành

Suy ra: góc BAC=góc EMD

b: Sửa đề: CM góc A+góc AEM=180 độ

Ta có: EM//AD
nên góc AEM+góc A=180 độ(hai góc trong cùng phía)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

3 tháng 10 2015

A B C M E D 1 2 3 4 1 2

+) ME // AC => góc C = góc M1 ( 2 góc đồng vị)  và góc A2 = M(2 góc SLT)
+) MD // AB => góc B = góc M4 ( 2 góc đồng vị) và góc A1 = góc M3 ( 2 góc SLT)

=> góc A + góc B + góc C = góc A1 + A+ B + C = M+ M+ M+ M= góc BMC = 180o

Vậy.............

 

30 tháng 8 2015

các bạn giúp mình làm bài hinh trên nhé

18 tháng 7 2017

Mik kovbieets ,bạn có thể vào phần câu hỏi tương tự

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

20 tháng 1 2020

A B C D E M N I 1 2 1

(Hình ảnh chỉ mang tính chất minh họa)

a, Ta có: \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow\widehat{B1}=\widehat{C2}\left(1\right)\)

Mà: \(\widehat{C2}=\widehat{C1}\left(đ.đỉnh\right)\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{B1}=\widehat{C1}\)

Xét \(\Delta MDB\) và \(\Delta NCE\) vuông tại \(D;E\) có:

\(BD=CE\left(gt\right)\)

\(\widehat{B1}=\widehat{C1}\left(cmt\right)\)

\(\Rightarrow\Delta MDB=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=NE\left(2c.t.ứng\right)\)

b, Ta có: \(\hept{\begin{cases}MD\perp BE\\NE\perp BE\end{cases}\Rightarrow MD//NE}\)

\(\Rightarrow\widehat{ENI}=\widehat{DMI}\left(so-le-trong\right)\)

Xét \(\Delta IMD\) và \(\Delta INE\)  vuông tại \(D;E\) có:

\(DM=EN\left(cmt\right)\)

\(\widehat{IMD}=\widehat{INE}\left(cmt\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gnđ\right)\)

\(\Rightarrow ID=IE\left(2c.t.ứ\right)\)

\(\Rightarrow I\) là trung điểm của \(DE\left(đpcm\right)\)

P/s: Sửa đề câu a, Chứng minh \(MD=NE\)

20 tháng 1 2020

Sửa đề câu a thành : Chứng minh: MD = NE

ABCDINEM==

   GT  

 △ABC (AB = AC). D \in BC ; BD = CE

 DM ⊥ BC (M \in AB) ; EN ⊥ BC 

 MN ∩ DE = { I } 

   KL

 a, MD = ME

 b, ID = IE

Bài giải:

a, Vì △ABC có AB = AC => △ABC cân tại A => ABC = ACB

Mà ACB = ECN (2 góc đối đỉnh)

=> ABC = ECN

Xét △MDB vuông tại D và △NEC vuông tại E

Có: MBD = NCE (cmt)

          BD = EC (gt)

=> △MDB = △NEC (cgv-gnk)

=> MD = NE (2 cạnh tương ứng)

b, Xét △MDI vuông tại D có: DMI + MID = 90o   

Xét △IEN vuông tại E có: INE + EIN = 90o

Mà  MID = EIN (2 góc đối đỉnh)

=> DMI = INE

Xét △MDI vuông tại D và △NEI vuông tại E

Có: MD = NE (cmt)

      DMI = INE (cmt)

=> △MDI = △NEI (cgv-gnk)

=> ID = IE (2 cạnh tương ứng)

Và I nằm giữa D, E

=> I là trung điểm của DE