Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Từ đó, ta được
Dựa vào đường cao và sin của góc C. Ta có công thức tính diện tích tam giác ABC:
S(đpcm)
p là nửa chu vi =>a+b+c=2p
a, \(a^2-b^2-c^2+2bc=a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a-b+c\right)\left(a+b-c\right)\)
\(=\left(a+b+c-2b\right)\left(a+b+c-2c\right)=\left(2p-2b\right)\left(2p-2c\right)=4\left(p-b\right)\left(p-c\right)\) (đpcm)
b, \(p^2+\left(p-a\right)^2+\left(p-b\right)^2+\left(p-c\right)^2=p^2+p^2-2pa+a^2+p^2-2pb+b^2+p^2-2pc+c^2\)
\(=4p^2-2p\left(a+b+c\right)+a^2+b^2+c^2=4p^2-2p.2p+a^2+b^2+c^2=a^2+b^2+c^2\) (đpcm)
a ) Khi \(a=b=c\)
\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)
\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)
Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)
b ) Khi \(a^2=b^2+c^2\)
\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)
\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)
Từ \(b^2+c^2=a^2\)
\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :
\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)
Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .
chuyên đề là tính các đại lượng hình học bằng cách lập phương trình nhé
A B C H c b a x
hình, CH=x . Mọi người giải giúp mình với mình sắp học rùi