Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2
=> ΔABC vuông tại A (định lý Py- ta-go đảo)
b) Xét ΔAHD và ΔAED có:
AD là cạnh chung
^AHD=^AED (=90°)
^HAD=^EAD (AD là tia phân giác)
Vậy ΔAHD = ΔAED
=> AH=AE
DH=DE
Nên AD là đường trung trực của HE
c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.
Do đó DE<DC
Mà DH=DE (cmt)
Nên DH<DC
a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chug
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
Suy ra: AH=AE: DH=DE
=>AD là đường trung trực của HE
c: Ta có: DH=DE
mà DE<DC
nên DH<DC