K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC vuông góc AH tại H

nên BC là tiếp tuyến của (A)

b: Xét (A) có

BH,BE là tiếp tuyến

nên AB là phân giác của góc HAE(1)

Xét (A) có

CF,CH là tiếp tuyến

nên AC là phân giác của góc HAF(2)

Từ (1), (2) suy ra góc FAE=2*90=180 độ

=>F,A,E thẳng hàng

c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

14 tháng 12 2023

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: Xét (A) có

BH,BD là các tiếp tuyến

Do đó: BH=BD và AB là phân giác của góc HAD

Xét (A) có

CE,CH là các tiếp tuyến

Do đó: CE=CH và AC là phân giác của góc HAE

c: BD+CE

=BH+CH

=BC

d: AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

AC là phân giác của góc HAE

=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)

Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)

=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)

=>E,A,D thẳng hàng

21 tháng 12 2016

BAI NAY TUONG DOI DE  NHUNG MINH KHONG BIET VE HINH

21 tháng 12 2016

bạn cứ giải ra hộ mình đi còn hình thì mình biết vẽ rồi nhé

29 tháng 5 2019

c, Gọi K là giao điểm của DG và IF

Vì D là giao điểm của 2 tiếp tuyến 

-=>\(AC\perp OD\)

=>ADO=CAB=FAE

=> tam giác ADO đồng dạng tam giác EAF

=> \(\frac{AD}{EA}=\frac{AO}{EF}\)

=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)

=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )

=> ABD=IFE

=> tứ giác KBEF nội tiếp 

=> FBK=90độ

=> \(GK\perp IF\)

Lại có \(IE\perp FG\),IE giao GK tại B

=> B là trực tâm của tam giác IFG

MÀ B cố định 

=> ĐPCM

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(

a: BC=5cm

AH=2,4cm

b: Xét (A) có 

CE là tiếp tuyến

CH là tiếp tuyến

Do đó: AC là tia phân giác của góc EAH(1)

Xét (A) có 

BH là tiếp tuyến

BD là tiếp tuyến

Do đó: AB là tia phân giác của góc HAD(2)

Từ (1) và (2) suy ra E,A,D thẳng hàng

3 tháng 1 2022

Tính AH ntn bạn ?