Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14.
Áp dụng định lí hàm số Cô sin, ta có:
\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)
Bài 19.
Áp dụng định lí sin và định lí Cô sin, ta có:
\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)
Có\(\overrightarrow{AB}\left(1;-3\right),\overrightarrow{AC}\left(6;2\right),\overrightarrow{BC}\left(5;5\right)\)
\(\left|\overrightarrow{AB}\right|=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)
tương tự \(\left|\overrightarrow{AC}\right|=2\sqrt{10},\left|\overrightarrow{BC}\right|=5\sqrt{2}\)
Có \(AB^2+AC^2=\left(\sqrt{10}\right)^2+\left(2\sqrt{10}\right)^2=50=BC^2\)
\(\Rightarrow\Delta ABC\) là tam giác vuông
\(P_{\Delta ABC}=2\sqrt{10}+\sqrt{10}+5\sqrt{2}=3\sqrt{10}+5\sqrt{2}\)
\(S_{\Delta ABC}=\frac{1}{2}.2\sqrt{10}.\sqrt{10}=10\)
bài 2)
xét \(2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-4\overrightarrow{OD}=2\left(\overrightarrow{OA}+\overrightarrow{OD}\right)+\left(\overrightarrow{OB}-\overrightarrow{OD}\right)+\left(\overrightarrow{OC}-\overrightarrow{OD}\right)\)
\(=2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{DA}+2\overrightarrow{DM}\) ( Vì M là trung điểm của BC )
\(=2\left(\overrightarrow{DA}+\overrightarrow{DM}\right)=\overrightarrow{0}\) ( Vì D là trung điểm của AM )
=> đpcm
Câu 4:
\(\overrightarrow{AB}=\left(-6;-2\right)\)
\(\overrightarrow{AH}=\left(m+1;m+1\right)\)
Để A,B,H thẳng hàng thì \(\dfrac{m+1}{-6}=\dfrac{m+1}{-2}\)
=>1/-6=1/-2(loại)
a/ \(\overrightarrow{AB}=\left(0;4\right)=4\left(0;1\right)\) ; \(\overrightarrow{AC}=\left(-3;0\right)=-3\left(1;0\right)\) ; \(\overrightarrow{CB}=\left(3;4\right)\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow\) Đường tròn ngoại tiếp tam giác ABC nhận trung điểm BC là tâm và BC là đường kính
Gọi I là trung điểm BC \(\Rightarrow I\left(\frac{1}{2};2\right)\)
\(R=\frac{BC}{2}=\frac{1}{2}\sqrt{3^2+4^2}=\frac{5}{2}\)
Phương trình (C):
\(\left(x-\frac{1}{2}\right)^2+\left(y-2\right)^2=\frac{25}{4}\Leftrightarrow x^2+y^2-x-4y-2=0\)
b/ Do d song song BC nên d nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=\frac{3}{2}\)
\(\Rightarrow\frac{\left|4.\frac{1}{2}-3.2+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\frac{3}{2}\Leftrightarrow\left|c-4\right|=\frac{15}{2}\Rightarrow\left[{}\begin{matrix}c=\frac{23}{2}\\c=-\frac{7}{2}\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y+\frac{23}{2}=0\\4x-3y-\frac{7}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(2,2\right)\\\overrightarrow{BC}=\left(-5,-1\right)\\\overrightarrow{AC}=\left(-3,1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{2^2+2^2}=2\sqrt{2}\\BC=\sqrt{\left(-5\right)^2+\left(-1\right)^1}=\sqrt{26}\\AC=\sqrt{\left(-3\right)^2+1^2}=\sqrt{10}\end{matrix}\right.\)
\(p=\dfrac{2\sqrt{2}+\sqrt{26}+\sqrt{10}}{2}\)
Áp dụng công thức Herong:
\(S=\sqrt{p.\left(p-2\sqrt{2}\right)\left(p-\sqrt{26}\right)\left(p-\sqrt{10}\right)}=\sqrt{16}=4\)