Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A )
\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)
b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)
\(\Rightarrow\)\(BM+CN\le BC\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A
c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)
Dấu "=" xảy ra khi tam giác ABC cân tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình sẽ làm từ câu C nha vì câu C có liên quan đến câu cuối
c/ Xét tam giác ABF và tam giác AEC ta có :
Góc BAF = góc CAE ( AF là phân giác)
góc ABF = góc AEC ( 2 góc nt chắn cung AC)
=>tam giác ABF đồng dạng tam giác AEC (g-g)
=>\(\frac{AB}{AE}=\frac{AF}{AC}\)=>AB.AC=AE.AF
d/ Xét tam giác ABF và tam giác CFE ta có:
góc ABF = góc FEC ( 2 góc nt chắn cung AC )
góc BAF = góc FCE (2 góc nt chắn cung EB )
=> tam giác ABF đồng dạng tam giác CEF (g-g)
=>\(\frac{FB}{FE}=\frac{FA}{FC}\)=>FB.FC=FA.FE
Ta có AF.AE=AB.AC (cmt)
AF.FE=BF.CF (cmt)
=> AF.AE-AF.FE = AB.AC - BF.CF
=> AF(AE-FE) = AB.AC - BF.CF
=> \(AF^2=AB.AC-BF.CF\)
a) Xét (O) có AE là tia phân giác của góc BAC
=> ^BAE=^CAE
=> sđBE=sđCE
=> BE=CE (liên hệ giữa cung và dây cung)
=> tam giác BEC cân tại E (đpcm)
b) Tứ giác ABEC nội tiếp (O)
=> ^BAC+^BEC=180 độ (2 góc đối nhau)
<=> ^BEC=180 độ - ^BAC
Tam giác ABC có ^BAC+^ABC+^BCA=180 độ
=> =180 độ - ^BAC=^ABC+^BCA
Suy ra Góc BEC = góc ABC + góc ACB (đpcm)
c) AE là tia phân giác của góc BAC
=> ^BAE=^CAE
Hay ^BAF=^CAE
Tứ giác ABEC nội tiếp (O)
=> ^ABC=^AEC (2 góc nt chắn cung AC)
Hay ^ABF=^AEC
Xét tam giác ABF và tam giác AEC có:
^ABF=^AEC
^BAF=^CAE
=> tam giác ABF ~ tam giác AEC (g-g)
=> AB/AF=AE/AC
<=> AB.AC=AE.AF (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác vuông \(\Delta ABD\to\tan B=\frac{AD}{BD}.\)
Xét tam giác vuông \(\Delta ACD\to\tan C=\frac{AD}{CD}.\)
Vậy \(\tan B\cdot\tan C=\frac{AD}{BD}\cdot\frac{AD}{CD}=\frac{AD^2}{BD\cdot CD}.\)
Mặt khác \(\Delta DHB\sim\Delta DCA\) (g.g), ta suy ra \(\frac{DH}{DB}=\frac{DC}{DA}\to DB\cdot DC=DH\cdot DA.\) Thành thử
\(\tan B\cdot\tan C=\frac{AD^2}{BD\cdot CD}=\frac{AD^2}{DH\cdot DA}=\frac{AD}{HD}.\)
b. Theo chứng minh trên \(DH\cdot DA=DB\cdot DC\le\left(\frac{DB+DC}{2}\right)^2=\frac{BC^2}{4}.\)
c. Đề bài không đúng, đề nghị tác giả xem lại đề!
![](https://rs.olm.vn/images/avt/0.png?1311)
$a)$ Xét $\Delta EAB$ và $\Delta ECD$ có:
$\widehat {E_1}=\widehat{E_2}$ (đối đỉnh)
$\widehat {A_1}=\widehat{A_2} (gt)$
$\Rightarrow $\Delta EAB$ ~ $\Delta ECD$
$b)$ Xét $\Delta ABE$ và $\Delta ACD$ có:
$\widehat {A_1}=\widehat{A_2} (gt)$
$\widehat {ABE}=\widehat{ADC}$ (cùng chắn cung $AC$)
$\Rightarrow $\Delta ABE$ ~ $\Delta ADC$
\(\Rightarrow \dfrac{{AB}}{{AD}} = \dfrac{{AE}}{{AC}} \Leftrightarrow AB.AC = AD.AE\)
c/m AD^2 < AB.AC