\(\Delta ABC\) cân tại A, kẻ các đường cao BH và CK. Nối K với H

Chứng minh <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

Ta có ΔABH=ΔACK ( cạnh huyền- góc nhọn)

⇒ AH=AK

⇒ ΔAHK cân tại A

Nên ∠AKH=∠AHK =\(\dfrac{180^0-A}{2}\)

Mà ΔABC cân tại A (gt)

⇒ ∠ABC=∠ACB= \(\dfrac{180^0-A}{2}\)

Nên ∠AKH=∠ABC

Mà hai góc này ở vị trí đồng vị

⇒ HK//BC

Nên BKHC là hình thang

Có ∠ABC=∠ACB (gt)

Vậy BKHC là hình thang cân

26 tháng 9 2016

+ Xét hai tg vuông BKC và tg vuông CHB có

Cạnh huyền BC chung (1)

\(S_{ABC}=\frac{AB.CK}{2}=\frac{AC.BH}{2}\) Mà AB=AC => BH=CK (2)

Từ (2) Và (2) => tg BKC = tg CHB (cạnh huyền và cạnh góc vuông tương ứng bằng nhau) => BK=CH (*)

Mà AB=AC=AK+BK=AH+CH => AK=AH => tg AKH cân tại A

+ Xét tg cân AKH có

^AKH=^AHK=(180-^BAC)/2 (3)

+ Xét tg cân ABC có

^ABC=^ACB=(180-^BAC)/2 (4)

Từ (3) và (4) => ^AKH=^ABC => KH//BC (có hai góc đồng vị bằng nhau) (**)

Từ (*) và (**) => BKHC là hình thang cân


 

1 tháng 11 2019

a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)

=>BH=CK ; BK=CH

Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A

=>Góc AKH=Góc KBC mà 2 góc đồng vị

=>KH//BC=>KHCB là hình thang,có BH=CK

=>KHCB là hình thang cân

b)Tứ giác KIBM có:KH=BM ; KH//BM

=>KHBM là hình bình hành 

=>KB=HM

    Mà HC=KB

=>HC=MH=> Tam giác HMC cân tại H

c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)

Chúc bạn học tốt!!

5 tháng 9 2018

vì tứ giác FMEH có góc F = 90 độ; H = 90 độ; E = 90 độ.

\(\Rightarrow\)góc M = 90 độ

\(\Rightarrow FH//ME ; FM//HE\)

\(\Rightarrow\)tứ giác FMEH là hình chữ nhật 

\(\Rightarrow\)ME=FH

a ) tứ giác MFHE có :

\(\widehat{MFH}+\widehat{FHE}+\widehat{HEM}+\widehat{EMF}=360^o\)( tính chất tổng các góc trong tứ giác )

hay \(90^o+90^o+90^o+\widehat{EMF}=360^o\)

\(\Rightarrow\widehat{EMF}=360^o-90^o-90^o-90^o\)

\(\Rightarrow\widehat{EMF}=90^o\)

\(\Rightarrow FM\perp ME\left(dhnb\right)\)

mà \(HE\perp ME\left(gt\right)\)

\(\Rightarrow FM//HE\left(\perp\rightarrow//\right)\)

\(\Rightarrow FHEM\)là hình thang

\(\widehat{MFH}=\widehat{EMF}\left(=90^o\right)\)

\(\Rightarrow FHEM\)là hình thang cân

\(\Rightarrow ME=FH\)( tính chất cạnh trong hình thang cân )

b ) kẻ EF

có M là trung điểm của BC ( gt )

\(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow AM\)là đường cao

\(\Rightarrow AM\)cũng là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAM}=\widehat{CAE}\)\(hay\widehat{DAM}=\widehat{EAM}\)

xét \(\Delta MAD\)và \(\Delta MCE\)

\(\hept{\begin{cases}\widehat{ADM}=\widehat{AEM}=90^o\\AMchung\\\widehat{DAM}=\widehat{EAM}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MAD=\Delta MCE\left(ch-gn\right)\)

\(\Rightarrow AD=AE\)( 2 cạnh tương ứng )

xét \(\Delta ADK\)và \(\Delta AEK\)có :

\(\hept{\begin{cases}AMchung\\\widehat{DAK}=\widehat{EAK}\left(cmt\right)\\AD=AE\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta ADK=\Delta AEK\left(c-g-c\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}\)( 2 góc tương ứng )

mà \(\widehat{AKD}+\widehat{AKE}=180^o\left(kb\right)\)

\(\Rightarrow\widehat{AKD}=\widehat{AKE}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AM\perp DK\left(dhnb\right)\)

AM là đường cao \(\Rightarrow AM\perp BC\)

\(\Rightarrow DK//BC\)

\(hayBK//MC\)

\(\Rightarrow MDKC\)là hình thang

3 tháng 8 2017

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.

21 tháng 4 2017

Bài giải:

a) Hình thang ABEC (AB // CE) có hai cạnh bên AC, BE song song nên chúng bằng nhau:

AC = BE (1)

Theo giả thiết AC = BD (2)

Từ (1) và (2) suy ra BE = BD do đó tam giác BDE cân.

b) Ta có AC // BE suy ra = (3)

∆BDE cân tại B (câu a) nên = (4)

Từ (3) và (4) suy ra =

Xét ∆ACD và ∆BCD có AC = BD (gt)

= (cmt)

CD cạnh chung

Nên ∆ACD = ∆BDC (c.g.c)

c) ∆ACD = ∆BDC (câu b)

Suy ra

Hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.


21 tháng 8 2019

giup mình với mai đi hc rồi