Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BMNC :
Ta có :\(\widehat{BMC}\)= 90 ( CM là đường cao)
\(\widehat{CNB}\)= 90 ( BN là đường cao)
M,N là hai đỉnh liên tiếp cùng nhìn cạnh BC
=> Tứ giác BMNC là tứ giác nội tiếp
Xét tứ giác AMHN :
Ta có : \(\widehat{HMA}\)= 90 ( CM là đường cao )
\(\widehat{HNA}\)= 90 ( BN là đường cao )
\(\widehat{HMA}+\widehat{HNA}\)=180
=> Tứ giác AMHN là tứ giác nội tiếp
1: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BFEC là tứ giác nội tiếp
Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
Do đó: AEDB là tứ giác nội tiếp
2: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
FH là phân giác góc DFE => HQ=HV
Chứng minh FQ=FV => FH là trung trực QV => FH vuông góc QV => QV song song AB => góc HIQ = HAF
Mà góc HAF = HEF nên góc HIQ = HEF => HEIQ nội tiếp => HIE = 90
Chứng minh tam giác DIS = DIE => IS=IE
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)