Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a)_ Từ C kẻ đường thẳng song song với AB, cắt FE tại N => ^NCM = ^EBM (so le trong)
_Xét tg NCM và tg EBM ta có:
^NCM =^EBM(cmt)
CM=BM(gt)
^NMC =^EMB(đối đỉnh)
=> tg NCM = tg EBM (g.c.g)
=> CN = BE (2 cạnh tương ứng)
_CN // AB(cách vẽ) => ^CNF = ^AEF(đồng vị)(1)
Bạn c/m tg AHF = tg AHE(g.c.g)
=> ^AFH = ^AEH hay ^CFN = ^AEF(2)
(1),(2) => ^CNF = ^CFN => tg CFN cân tại C
=> CF = CN. Mà CN = BE(cmt) => CF = BE
b) _Ta có: AB = AE + BE; AC = AF - CF
=> AB + AC = AE+BE+AF-CF(*)
Tg AHF = tg AHE(cmt) => AF = AE
Lại có BE=CF(câu a) thay vào(*) ta có:
AB+AC = AE+BE+AE-BE =2.AE
=> AE=(AB+AC)/2
*Để mk nghĩ câu c đã
A B C M E F H D I
a) + Xét ΔAEF có AH là đường cao đồng thời là đương phân giác
=> ΔAEF cân tại A
=> AH cũng đồng thời là đường trung tuyến của ΔAEF
=> EH = 1/2 EF
+ Xét Δ AEH vuông tại A theo định lý Py-ta-go ta có :
\(AE^2=AH^2+EH^2\)
\(\Rightarrow AE^2=AH^2+\left(\frac{EF}{2}\right)^2=AH^2+\frac{EF^2}{4}\)
b ) Xem lại đề nha bn!
c) Kẻ BI // AC \(\left(I\in EF\right)\)
+ Δ AEF cân tại A
\(\Rightarrow\widehat{AEF}=\widehat{AFE}\)
+ BI // AC \(\Rightarrow\widehat{BIE}=\widehat{AFE}\)
\(\Rightarrow\widehat{BIE}=\widehat{BEI}\) => ΔBEI cân tại B
=> BE = BI
+ BI // CF \(\Rightarrow\widehat{MBI}=\widehat{MCF}\) ( 2 góc so le trong )
+ ΔBMI = ΔCMF ( g.c.g )
=> BI = CF => BE = CF