K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1 2019

\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)

\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)

\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)

\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(\Rightarrow C=2019-\dfrac{1}{2019}\)

22 tháng 1 2019

@Luân Đào @Nguyễn Việt Lâm

30 tháng 6 2017

1. a) Lấy biến C để tính un và E để tính sn và D là biến đếm. Ta có quy trình bấm phím liên tục

D=D+1:C=2B+A:E=E+C:A=B:B=C

CALC giá trị A=2; B=20; D=2; E=22 nhấn "=" liên tục

Kết quả: u20 = 137990600; s20 = 235564680; u30 = 928124755084; s30 = 1584408063182

2. Lấy A làm biến lẻ, B làm biến chẵn, C là tổng S, D là biến đếm. Ta có quy trình bấm phím liên tục

D=D+1:A=2B+3A:C=C+A:D=D+1:B=2A+3B:C=C+B

CALC giá trị D=2; A=1; B=2; C=3 nhấn "=" liên tục

a) Kết quả: u10 = 28595; u15 = 8725987; u20 = 3520076983

b) Kết quả: s10 = 40149; s15 =13088980 ; s20 = 4942439711

\(\Leftrightarrow\left\{{}\begin{matrix}12\left(x+1\right)-15\left(y+2\right)=12\left(x-y\right)\\3\left(x-3\right)-4\left(y-3\right)=12\left(2y-x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x+12-15y-30-12x+12y=0\\3x-9-4y+12-24y+12x=0\end{matrix}\right.\)

=>-3y-18=0 và 15x-28y=-3

=>y=-6 và 15x=-3+28y=-3+28*(-6)=-3-168=-171

=>y=-6; x=-171/15=-57/5

Thay x=-57/5 và y=-6 vào PT, ta đc:

-57/5*3m-5*(-6)=2m+1

=>-171/5m+30=2m+1

=>-181/5m=-29

=>m=145/181

18 tháng 5 2017

a)thay n=1,2,3,4 vào công thức Un=\(\frac{\left(10+\sqrt{3}\right)^n-\left(10-\sqrt{3}\right)^n}{2\sqrt{3}}\),ta có :

U1=1;U2=20;U3=303;U4=4120

b)giả sử Un+2 =aUn+1 + bUn (*)

thay  N=1,2 vào (*)

=>\(\hept{\begin{cases}U3=aU2+bU1\\U4=aU3+bU2.\end{cases}}\)

thay các giá trị U1=1;U2=20         ,U3=303          ,U4=4120

=>\(\hept{\begin{cases}a=20\\b=-97\end{cases}}\)

=>Un+2=20Un+1 - 97Un

c) Đưa U1=1 gán vào A bằng cách  1 shift RCL (-)

Đưa U2=20 gán  vào B bằng cách 20 shift RCL '''

khởi tạp biến đếm D:2 gán vào D bằng cách 2 shift RCl sin

ghi vào màn hình D=D+1:A=20B-97A:D=D+1:B=20A-97B

ấn calc lặp phím= đến khi D=D+1=5

ta được U5=53009, tương tự U6=660540,U7=8068927;U8=97306160:U9=1163437281,.....(tự tính tiếp)

18 tháng 6 2017

B2 la \(n\ge4\) nha!

18 tháng 6 2017

đây là toán casio.Chuyển sang web # ( web về casio ) sẽ dễ có được lời giải hơn.