K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}\Rightarrow}a=b=c=d\left(đpcm\right)}\)

Câu còn lại ? đề luôn

10 tháng 10 2018

Mình sửa đề rồi nha!

15 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{b+c}{a}=2\Rightarrow b+c=2a\)( 1 )

\(\frac{c+a}{b}=2\Rightarrow c+a=2b\)( 2 )

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)( 3 )

Từ ( 1 ),(2) và ( 3 ) \(\Rightarrow a=b=c\)

15 tháng 10 2017

Bạn nào làm hộ mình , mình TK cho 10 TK nhé 

27 tháng 11 2018

Sửa đề cmr a=2018 hoặc b=2018 hoặc c=2018, đây là toán 8

\(a+b+c=2018\Rightarrow\frac{1}{a+b+c}=\frac{1}{2018}\)

=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-ab\left(a+b\right)\)

<=>\(\left(a+b\right)\left(ca+bc+c^2\right)+ab\left(a+b\right)=0\)

<=>\(\left(a+b\right)\left(ca+bc+c^2+ab\right)=0\)

<=>\(\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

<=>\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

<=>a+b=0 hoặc b+c=0 hoặc c+a=0

Mà a+b+c=2018

=>c=2018 hoặc a=2018 hoặc b=2018 (đpcm)

3 tháng 6 2017

a) a + b + c + d = 0 \(\Rightarrow a+c=-\left(b+d\right)\)

\(\Rightarrow\)\(\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Rightarrow\)\(a^3+c^3+3ac\left(a+c\right)=-b^3-d^3-3b\left(b+d\right)\)

\(\Rightarrow\)\(a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)

                                             \(=3\left(ac-bd\right)\left(b+d\right)\)\(\left(dpcm\right)\)

b) - \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\)

\(\Leftrightarrow\left(\sqrt{a-b+c}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{c}\right)^2\)

\(\Leftrightarrow b\left(a-b+c\right)=ac\Leftrightarrow\left(b-c\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\b=c\end{cases}\left(1\right)}\)

   - Gia su \(a\le b\le c\), ta có: \(1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\)

\(\Rightarrow a\le3\Rightarrow a=1,2,3\)

      + Nếu a = 1 thì: \(\frac{1}{b}+\frac{1}{c}=0\left(vl\right)\)

      + Nếu a = 2 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\le\frac{2}{b}\Rightarrow b\le4\)

\(\Rightarrow a=2;b=c=4\)

      + Nếu a = 3 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{2}{3}\le\frac{2}{b}\Rightarrow b\le3\)

\(\Rightarrow a=b=c=3\)

Cac cap (a, b, c) thoa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)la:

        \(\left(2,4,4\right);\left(4,2,4\right);\left(4,4,2\right);\left(3,3,3\right)\)

Kết hợp với \(\left(1\right)\)ta có nghiệm: \(\left(2,4,4\right);\left(4,4,2\right);\left(3,3,3\right)\)

Bài 1Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Chững minh c=0Bài 2Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)Chững minh a + b+ c+ d = 0Bài 3Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)Bài 4Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thứcBài...
Đọc tiếp

Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0

Bài 2

Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Chững minh a + b+ c+ d = 0

Bài 3

Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)

Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bài 4

Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)

Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức

Bài 5

Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)

Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)

Bài 6

Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)

Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)

Bài 7

Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)

Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức

Bài 8

Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)

a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)

b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)

0