K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)

=>x=45; y=60; z=75

b: 

 Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)

=>x=12; y=16; z=20

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)

Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75

b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)

Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a) Ta có:

\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)

Vậy  \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} =  - 4\)

Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96

15 tháng 8 2019

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)   và \(x^2-y^2=-16\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)

Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)

         \(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)

         \(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)

Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)

Chúc bạn học tốt !!!

7 tháng 8 2015

\(x+y+z=\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)+1+1-2}=\frac{1}{2}\)

\(\frac{x}{y+z+1}=\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Rightarrow x=\frac{1}{2}\)

y, z tương tự

25 tháng 9 2015

a. \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

Theo t/c dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow\frac{x}{4}=2\Rightarrow x=2.4=8\)

\(\Rightarrow\frac{3y}{9}=2\Rightarrow3y=2.9=18\Rightarrow y=18:3=6\)

\(\Rightarrow\frac{4z}{36}=2\Rightarrow4z=2.36=72\Rightarrow z=72:4=18\)

b. \(\frac{x}{y}=\frac{7}{20}\Rightarrow\frac{x}{7}=\frac{y}{20};\frac{y}{z}=\frac{5}{8}\Rightarrow\frac{y}{5}=\frac{z}{8}\)

Ta có: \(\frac{x}{7}=\frac{y}{20};\frac{y}{5}=\frac{z}{8}\Rightarrow\frac{x}{35}=\frac{y}{100}=\frac{z}{160}\Rightarrow\frac{2x}{70}=\frac{5y}{500}=\frac{2z}{320}\)

Theo t/c dãy tỉ số bằng nhau:

\(\frac{2x}{70}=\frac{5y}{500}=\frac{2z}{320}=\frac{2x+5y-2z}{70+500-320}=\frac{100}{250}=\frac{2}{5}\)

\(\Rightarrow\frac{2x}{70}=\frac{2}{5}\Rightarrow2x=\frac{2}{5}.70=28\Rightarrow x=28:2=14\)

\(\Rightarrow\frac{5y}{500}=\frac{2}{5}\Rightarrow5y=\frac{2}{5}.500=200\Rightarrow y=200:5=40\)

\(\Rightarrow\frac{2z}{320}=\frac{2}{5}\Rightarrow2z=\frac{2}{5}.320=128\Rightarrow z=128:2=64\)

 

25 tháng 12 2016

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{z}=\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y+y+z+z+x}{x+y+z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Ta có: \(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=2.2.2=2^3=8\)

Vậy P = 8

2 tháng 2 2022

\(2\left(x-y\right)^2=\left(z-x\right)\left(z-y\right)\Leftrightarrow\frac{2\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}=1\)

\(\frac{2\left(z-y\right)^2}{\left(z-x\right)\left(z-y\right)}=\frac{\left(x-y\right)^2}{z\left(x-y\right)}=\frac{x-y}{z}\Rightarrow x-y=z\)