Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{u_{n-1}}{u_n}=\frac{n^2}{n^2-1}>0$ với mọi $n\geq 2$ nên $u_{n-1}, u_n$ luôn cùng dấu.
Mà $u_1=2017>0$ nên $u_n>0$ với mọi $n=1,2,...$
Mặt khác:
$n^2(u_{n-1}-u_n)=u_{n-1}>0\Rightarrow u_{n-1}>u_n$ nên dãy $(u_n)$ là dãy giảm.
Dãy giảm và bị chặn dưới nên $u_n$ hội tụ. Đặt $\lim u_n=a$.
Ta có: $a=n^2(a-a)\Rightarrow a=0$
Vậy $\lim u_n=0$
\(\left\{{}\begin{matrix}u_1=a\\u_{n+1}=\frac{1}{2}u_n\end{matrix}\right.\)
\(\Rightarrow u_n\) là CSN với công bội \(q=\frac{1}{2}\)
\(\Rightarrow u_n=a.\left(\frac{1}{2}\right)^{n-1}\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\frac{a}{2^{n-1}}\right)=0\)
Phương pháp:
Ứng với mỗi giá trị của n = 1, n = 2 ta tính các giá trị u2, u3 rồi tính giá trị của biểu thức.
Cách giải:
Ta có:
u n + 1 = u n + n , u 1 = 3
Chọn B
Chọn B.
Ta có:
Suy ra: un+1 > u0 – (n – 1) = 2012 – n
Mặt khác: un = (un – un-1) + (un-1 – un-2) + … + (u1 – u0) + u0
Mà:
Suy ra un < u0 – n + 1 = 2012 – n
Do đó: 2011 – n < un < 2012 – n ⇒ [un] = 2011 – n
Vì u0 = 2011 và
nên [u0] = 2011 – 0, [u1] = 2010 = 2011 – 1
Vậy [un] = 2011 – n,