Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1.
\(y = \dfrac{{n + \sin 2n}}{{n + 5}} = \dfrac{{\dfrac{n}{n} + \dfrac{{\sin 2n}}{n}}}{{\dfrac{n}{n} + \dfrac{5}{n}}} = \dfrac{{1 + \dfrac{{2.\sin 2n}}{{2n}}}}{{1 + \dfrac{5}{n}}}\\ \Rightarrow \lim y = \dfrac{{1 + 0}}{{1 + 0}} = 1 \)
Câu 2.
\(\lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}}\)
Vì \( - 1 \le \sin n \le 1; - 1 \le \cos n \le 1 \Rightarrow \) khi \(x \to \infty \) thì \(3\sin n + 4{\mathop{\rm cosn}\nolimits} = const \)
\(\Rightarrow T = \lim \dfrac{{3\sin n + 4\cos n}}{{n + 1}} = 0 \)
Chú thích: $const$ là kí hiệu hằng số, giống như dạng giới hạn L/vô cùng.
Câu 1.
Vì \(\sqrt{2},\left(\sqrt{2}\right)^2,...,\left(\sqrt{2}\right)^n\) lập thành cấp số nhân có \(u_1=\sqrt{2}=q\) nên
\({u_n} = \sqrt 2 .\dfrac{{1 - {{\left( {\sqrt 2 } \right)}^n}}}{{1 - \sqrt 2 }} = \left( {2 - \sqrt 2 } \right)\left[ {{{\left( {\sqrt 2 } \right)}^n} - 1} \right] \to \lim {u_n} = + \infty \) vì \(\left\{{}\begin{matrix}a=2-\sqrt{2}>0\\q=\sqrt{2}>1\end{matrix}\right.\)
Câu 3.
Ta có biến đổi:
\(\lim \left( {\dfrac{{{n^2} - n}}{{1 - 2{n^2}}} + \dfrac{{2\sin {n^2}}}{{\sqrt n }}} \right) = \lim \dfrac{{{n^2} - n}}{{1 - 2{n^2}}} = \dfrac{1}{2}\)
Câu 4.
\(\lim \left( {{n^2}\sin \dfrac{{n\pi }}{5} - 2{n^3}} \right) = \lim {n^3}\left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - \infty \)
Vì \(\lim {n^3} = + \infty ;\lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2 \)
\(\left| {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n}} \right| \le \dfrac{1}{n};\lim \dfrac{1}{n} = 0 \Rightarrow \lim \left( {\dfrac{{\sin \dfrac{{n\pi }}{5}}}{n} - 2} \right) = - 2\)
Câu 5.
Ta có: \(\left\{ \begin{array}{l} 0 \le \left| {{u_n}} \right| \le \dfrac{1}{{{n^2} + 1}} \le \dfrac{1}{n} \to 0\\ 0 \le \left| {{v_n}} \right| \le \dfrac{1}{{{n^2} + 2}} \le \dfrac{1}{n} \to 0 \end{array} \right. \to \lim {u_n} = \lim {v_n} = 0 \to \lim \left( {{u_n} + {v_n}} \right) = 0\)
- Ta có:
Chọn C