K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

a) Đặt \(v_n=u_n+\dfrac{1}{2}\). Khi đó \(v_1=3+\dfrac{1}{2}=\dfrac{7}{2}\).

Ta có \(v_n-\dfrac{1}{2}=5\left(v_{n-1}-\dfrac{1}{2}\right)+2\Leftrightarrow v_n=5v_{n-1}\).

Áp dụng liên tiếp n - 1 lần ta được: \(v_n=5v_{n-1}=5^2v_{n-2}=...=5^{n-1}v_1=\dfrac{5^{n-1}.7}{2}\).

Từ đó \(u_n=\dfrac{5^{n-1}.7-1}{2}\).

Suy ra \(u_7=\dfrac{5^6.7-1}{2}=54687\).

15 tháng 3 2021

b) Ta có \(v_n=273437\Leftrightarrow\dfrac{5^{n-1}.7-1}{2}=273437\Leftrightarrow n=8\).

Vậy 273437 là số hạng thứ 8 của dãy.

NV
2 tháng 3 2021

Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)

Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)

\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)

NV
5 tháng 1 2022

\(u_{n+1}=\dfrac{n\left(u_n+2\right)+n^2+1}{n+1}\)

\(\Rightarrow\left(n+1\right)u_{n+1}=nu_n+n^2+2n+1\)

\(\Rightarrow\left(n+1\right)u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

Đặt \(v_n=u.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{6}=0\\v_{n+1}=v_n=...=v_1=0\end{matrix}\right.\)

\(\Rightarrow n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n=0\)

\(\Rightarrow u_n=\dfrac{1}{3}n^2+\dfrac{1}{2}n+\dfrac{1}{6}=\dfrac{\left(n+1\right)\left(2n+1\right)}{6}\)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

27 tháng 11 2021

\(u_1=1\)

\(u_2=1\)

\(u_3=u_2+u_1=1+1=2\)

\(u_4=u_3+u_2=2+1=3\)

\(u_5=u_4+u_3=3+2=5\)

1 tháng 12 2023

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

15 tháng 10 2023

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)