K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

\(u_{n+1}-1=u_n\left(u_n-1\right)\Leftrightarrow\dfrac{1}{u_{n+1}-1}=\dfrac{1}{u_n-1}-\dfrac{1}{u_n}\Rightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Lan luot the i vo n:

\(\dfrac{1}{u_1}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cong ve voi ve:

\(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}=\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\)

Do dãy tăng và ko bị chặn trên <bạn thay vô là biết>

\(\Rightarrow\lim\limits\left(u_{n+1}-1\right)=+\infty\Rightarrow\lim\limits\sum\limits^n_{i=1}\dfrac{1}{u_i}=\lim\limits\left(\dfrac{1}{u_1-1}-\dfrac{1}{u_{n+1}-1}\right)=1\)

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.

19 tháng 2 2021

Bạn tham khảo câu trả lời của anh Lâm

https://hoc24.vn/cau-hoi/.334447965337

NV
4 tháng 1 2022

Đề chỗ này có vấn đề:

\(u_n^2+2021u_n-2023u_{n+1}+1\)

Thiếu dấu "="

8 tháng 1 2022

Cả biểu thức đấy bằng 0 ạ