\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{1+2u_nu_{n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 9 2019

Dãy số đã cho hiển nhiên là dãy dương

\(u_3=2>1\Rightarrow\) dự đoán dãy trên là dãy tăng hay \(u_{n+1}>u_n\) \(\forall n\ge2\)

Với \(n=2\) ta có \(u_3>u_2\) (đúng)

Giả thiết cũng đúng với \(n=k\) hay \(u_{k+1}>u_k\)

Ta cần chứng minh \(u_{k+1}>u_{k+1}\)

Thật vậy, \(u_{k+2}=\sqrt{u_{k+1}}+\sqrt{u_k}>\sqrt{u_k}+\sqrt{u_{k-1}}=u_{k+1}\)

Mặt khác \(u_n=\sqrt{u_{n-1}}+\sqrt{u_{n-2}}< \sqrt{u_n}+\sqrt{u_n}=2\sqrt{u_n}\)

\(\Rightarrow u_n^2< 4u_n\Rightarrow u_n< 4\)

\(\Rightarrow\) Dãy số tăng và bị chặn trên nên nó có giới hạn

Gọi giới hạn của dãy số là \(a\Rightarrow lim\left(u_n\right)=lim\left(u_{n-1}\right)=lim\left(u_{n+1}\right)=a\)

Từ biểu thức: \(u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}}\)

Lấy giới hạn 2 vế: \(\Rightarrow a=\sqrt{a}+\sqrt{a}\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=4\end{matrix}\right.\)

Vậy \(lim\left(u_n\right)=4\)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

24 tháng 5 2017

a)
\(u_1=5\)
\(u_2-u_1=1\)
\(u_3-u_2=4\)
............
\(u_n-u_{n-1}=3\left(n-1\right)-2=3n-5\)
Cộng từng vế của đẳng thức và rút gọn ta được:
\(u_n=5+1+4+7+...+3n-5\)
\(=5+\dfrac{\left(3n-5+1\right)\left(n-1\right)}{2}=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\).
Vậy \(u_n=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\) với \(n\ge1\).
Xét hiệu:
\(u_1=5\)
\(u_n-u_{n-1}=3n-5\) \(\left(n\ge2\right)\)
Với \(n\ge2\) thì \(3n-5>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.

NV
3 tháng 3 2020

\(u_n=\frac{n+1}{n-1}u_{n-1}\)

\(u_{n-1}=\frac{n-1+1}{n-1-1}u_{n-2}=\frac{n}{n-2}u_{n-2}\)

\(u_{n-2}=\frac{n-1}{n-3}u_{n-3}\)

...

\(u_2=\frac{2+1}{2-1}u_1\)

Nhân vế với vế:

\(u_nu_{n-1}u_{n-2}...u_2=\frac{\left(n+1\right)n\left(n-1\right)...3}{\left(n-1\right)\left(n-2\right)\left(n-3\right)...1}u_{n-1}u_{n-2}u_{n-3}...u_1\)

\(\Leftrightarrow u_n=\frac{n\left(n+1\right)}{2}u_1=n\left(n+1\right)\)

\(u_n< 100\Rightarrow n^2+n< 100\)

\(\Leftrightarrow n^2+n-100< 0\Rightarrow n\le9\Rightarrow n=\left\{1;2;...;9\right\}\)

NV
5 tháng 3 2020

Dãy là CSC với \(\left\{{}\begin{matrix}u_1=3\\d=4\end{matrix}\right.\)

\(\Rightarrow u_n=3+\left(n-1\right)4=4n-1\)

\(\Rightarrow4n-1< 100\Rightarrow n\le25\)