K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 3 2022

Tham khảo:

Câu 5 ạ - Hoc24

31 tháng 12 2019

Chọn B

∀n≥1 nên (un) là dãy số giảm

7 tháng 4 2017

7 tháng 12 2017

a) Năm số hạng đầu là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Lập tỉ số

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo công thứcđịnh nghĩa ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy, dãy số ( v n ) là cấp số nhân, có v 1   =   1 / 3 ,   q   =   1 / 3

c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 8 2019

Đáp án A

24 tháng 7 2017

Đáp án D

5 tháng 6 2019

Chọn A.

Ta có: 

Cộng hai vế ta được un = 2 + 1 + 3 + 5 + … + (2n – 3) = 2 + (n – 1)2

24 tháng 11 2019

a. 5 số hạng đầu dãy là:

u1 = 2;

u= 2u1 – 1 = 3;

u3 = 2u2 – 1 = 5;

u4 = 2u3 – 1 = 9;

u5 = 2u4 – 1 = 17

b. Chứng minh un = 2n – 1 + 1 (1)

+ Với n = 1 ⇒ u1 = 21 - 1 + 1 = 2 (đúng).

+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)

Ta chứng minh: uk+1 = 2k + 1. Thật vậy, ta có:

⇒ uk+1 = 2.uk – 1 = 2(2k-1 + 1) – 1 = 2.2k – 1 + 2 – 1 = 2k + 1

⇒ (1) cũng đúng với n = k + 1 .

Vậy un = 2n – 1 + 1 với mọi n ∈ N.

30 tháng 8 2023

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:

u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15

Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:

n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10

Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.

a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):

u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5

Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.

b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:

(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1

Vậy số hạng thứ mấy có giá trị 137137 là u1.

8 tháng 2 2022

Ủa lớp 9 học lim rồi á?

1 tháng 11 2019

Chọn B.

Phương pháp:

Công thức tính tổng n số hạng đầu tiên của cấp số cộng có số hạng đầu u1 và công sai d

 

Cách giải:

Ta có: u n + 1 = u n + 2 , ∀ n ∈ ℕ *

⇒ ( u n ) là cấp số cộng có u 1 = - 5 , d = 2