K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi  n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số9) trong các dãy...
Đọc tiếp

6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là

7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là

8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi  n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số

9) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số tăng

A.\(u_n=\left(\dfrac{2}{3}\right)^n\)

B. \(u_n=\dfrac{n}{n+1}\)

C. \(u_n=\dfrac{2}{n.\left(n+1\right)}\)

D. \(u_n=\dfrac{n+1}{n}\)

10) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số giảmA. \(u_n=3^n\)B. \(u_n=\dfrac{n-3}{n+1}\)C. \(u_n=\dfrac{n+4}{n+2}\)D. \(u_n=n^4+2\) 
1

6:

\(u_n=8+7\left(n-1\right)=7n+1\)

7: Đặt un=7/12

=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)

=>35n-28=24n+60

=>11n=88

=>n=8

=>Đây là số hạng thứ 8

8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)

=>9n^2+9=82n

=>9n^2-82n+9=0

=>(9n-1)(n-9)=0

=>n=9(nhận) hoặc n=1/9(loại)

=>Đây là số thứ 9

10B

9D

26 tháng 12 2023

C

26 tháng 12 2023

0<Un\(\dfrac{1}{2}\) :))

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

28 tháng 8 2018

Đáp án B

29 tháng 5 2019

l i m   b n   = l i m   3 n 2   -   5 n   +   1 n 2   +   4   =   + ∞

8 tháng 2 2019

Ta có:

0 = 0 0 + 1 ; 1 2 = 1 1 + 1 ; 2 3 = 2 2 + 1 3 4 = 3 3 + 1 ; 4 5 = 4 4 + 1

Suy ra  u n = n n + 1

Chọn đáp án B

10 tháng 12 2022

u(n=0) = \(\dfrac{0}{0+1}\)=0

u(n=1) = \(\dfrac{1}{1+1}\)=\(\dfrac{1}{2}\)

u3 (n = 2) = \(\dfrac{2}{2+1}\)\(\dfrac{2}{3}\)

u4 (n = 3) = \(\dfrac{3}{3+1}\) = \(\dfrac{3}{4}\)

u5 (n = 4) = \(\dfrac{4}{4+1}\) = \(\dfrac{4}{5}\)

un (n = n - 1) = \(\dfrac{n-1}{n-1+1}\) = \(\dfrac{n-1}{n}\)

Do đề không cho n thuộc N* nên ta chọn n = 0

Chọn đáp án C

31 tháng 3 2019

Ta có:

8 = 7.1 + 1

15 = 7.2 + 1

22 = 7.3 + 1

29 = 7.4 + 1

36 = 7.5 + 1

Suy ra số hạng tổng quát u n = 7 n + 1 .

Chọn đáp án C.