Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6:
\(u_n=8+7\left(n-1\right)=7n+1\)
7: Đặt un=7/12
=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)
=>35n-28=24n+60
=>11n=88
=>n=8
=>Đây là số hạng thứ 8
8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)
=>9n^2+9=82n
=>9n^2-82n+9=0
=>(9n-1)(n-9)=0
=>n=9(nhận) hoặc n=1/9(loại)
=>Đây là số thứ 9
10B
9D
a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).
c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).
có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).
Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.
d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).
Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).
Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).
Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).
Ta có:
0 = 0 0 + 1 ; 1 2 = 1 1 + 1 ; 2 3 = 2 2 + 1 3 4 = 3 3 + 1 ; 4 5 = 4 4 + 1
Suy ra u n = n n + 1
Chọn đáp án B
u1 (n=0) = \(\dfrac{0}{0+1}\)=0
u2 (n=1) = \(\dfrac{1}{1+1}\)=\(\dfrac{1}{2}\)
u3 (n = 2) = \(\dfrac{2}{2+1}\)= \(\dfrac{2}{3}\)
u4 (n = 3) = \(\dfrac{3}{3+1}\) = \(\dfrac{3}{4}\)
u5 (n = 4) = \(\dfrac{4}{4+1}\) = \(\dfrac{4}{5}\)
un (n = n - 1) = \(\dfrac{n-1}{n-1+1}\) = \(\dfrac{n-1}{n}\)
Do đề không cho n thuộc N* nên ta chọn n = 0
Chọn đáp án C
Ta có:
8 = 7.1 + 1
15 = 7.2 + 1
22 = 7.3 + 1
29 = 7.4 + 1
36 = 7.5 + 1
Suy ra số hạng tổng quát u n = 7 n + 1 .
Chọn đáp án C.
\(u_1=5=5.1\)
\(u_2=10=5.2\)
\(u_3=15=5.3\)
....
\(\Rightarrow u_n=5n\)