K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk mới hok lớp 6 à 

6 tháng 9 2015

Theo giả thiết ta có \(\left(a_1^2+\cdots+a_{2015}^2\right)-2\cdot2015\cdot\left(a_1+\cdots+a_{2015}\right)\le2015^3-2\cdot2015^3+1=1-2015^3\), do vậy mà \(\left(a_1-2015\right)^2+\cdots+\left(a_{2015}-2015\right)^2\le1\), vì các số bên vế trái đều là các số tự nhiên nên trong các số này có 2014 số bằng 0 số còn lại bằng 0 hoặc bằng 1. Thành thử trong 2015 số tự nhiên \(a_1,\ldots,a_{2015}\) có \(2014\) số bằng \(2015\) số còn lại có thể bằng \(2015\), có thể \(2014\)  hoặc \(2016\). Tuy nhiên hai trường hợp sau không thoả mãn. Vậy tất cả các số bằng \(2015\)

5 tháng 6 2015

Ở đây HS lớp 9 chắc chỉ đếm đc trên đầu ngón tay

7 tháng 6 2015

dung la buon nhu con chuon chuon

29 tháng 8 2015

Ta có   \(1^2+2^2+\cdots+2014^2=\text{2725088015}=a_1^2+\left(2a_2\right)^2+\cdots+\left(2014a_{2014}^2\right)^2\).

Suy ra \(\left(a_1^2-1\right)+2^2\left(a_2^2-1\right)+\cdots+2014^2\left(a_{2014}^2-1\right)=0\).

Vì các số \(a_1,\ldots,a_{2014}\)  nguyên khác không nên \(a_1^2,\ldots,a_{2014}^2\) là các số nguyên dương, do đó đều lớn hơn hoặc bằng 1. Vậy ta có \(a_1^2=a_2^2=\cdots=a_{2014}^2=1\). Điều này suy ra với mỗi \(i=1,\ldots,2014\) thì \(a_i\)  nhận tùy ý một trong hai giá trị là \(\pm1\). Vì tổng đã cho \(P=a_1+a_2+\cdots+a_{2014}\) , là số chẵn (do là tổng của 2014 số lẻ) do đó có thể nhận giá trị nguyên \(k\)  bất kì với \(k\in\left\{-2014,-2012,\ldots,-2,0,2,4,\ldots,2014\right\}.\)