K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

a) Đặt A = 1 + 7 + 72 + 73 + 74 + ... + 72015 (có 2016 số; 2016 chia hết cho 4)

A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (72012 + 72013 + 72014 + 72015)

A = 400 + 74.(1 + 7 + 72 + 73) + ... + 72012.(1 + 7 + 72 + 73)

A = 400 + 74.400 + ... + 72012.400

A = 400.(1 + 74 + ... + 72012)

A = (...0) (đpcm)

b) Dãy số 1; 7; 72; 73; 74; ...; 72015 gồm có 2016 số hạng

Ta đã biết 1 số tự nhiên khi chia cho 2015 chỉ có thể có 2015 loại số dư là dư 0; 1; 2; 3; ...; 2014. Có 2016 số mà chỉ có 2015 loại số dư nên theo nguyên lí Dirichlet sẽ có ít nhất 2 số cùng dư khi chia cho 2015

Hiệu của 2 số này chia hết cho 2015

Vậy có thể tìm được 2 số hạng của dãy mà hiệu của chúng chia hết cho 2015

14 tháng 7 2021

a, 81, 243, 729

...

a) 1;3;9;27;81;243;729

b) Số hạng thứ 20 của dãy là: \(3^{19}\)

 

1: Số số hạng là (99-1):1+1=99(số)

Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)

1:

3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]

=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)

=n(n+1)*(n+2)

=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

4 tháng 9 2023

cảm on nhonhung

20 tháng 5 2019

\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)

\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)

\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)

\(=4+3^2\cdot40+....+3^{2014}\cdot40\)

\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.

20 tháng 5 2019

\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)

\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)

\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)

\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)

\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:Ta thấy:10 = 2.4 + 212 = 2.5 + 214 = 2.6 + 2...998 = 2 .498 + 2Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy:  495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số...
Đọc tiếp

Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998

Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:

Ta thấy:

10 = 2.4 + 2

12 = 2.5 + 2

14 = 2.6 + 2

...

998 = 2 .498 + 2

Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy:  495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1

Khi đó ta có:

 D = 10 + 12 = ... + 996 + 998
+D = 998 + 996  ... + 12 + 10
 
 2D = 1008  1008 + ... + 1008 + 1008

2D = 1008.495 → D = 504.495 = 249480

Thực chất  D = (998 + 10).495 / 2

Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.

Khi đó số các số hạng của dãy (*) là: 

Tổng các số hạng của dãy (*) là: 

Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1 + (n - 1)d
Hoặc khi u1 = d = 1 thì 

nhanh nha

1
14 tháng 4 2016

nhận thấy: các số hạng của D đều cách nhau 2 đv

Số số hạng: (998-10):2+1=495 (số hạng)

=>\(D=\frac{\left(998+10\right).495}{2}=249480\)

làm vậy có phải nhanh hơn ko?