Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tgiac ABC và ADE có:
+ góc BAC = DAE = 90 độ (góc kề bù)
+ AB = AE
+ AC = AE
=> Tgiac ABC = ADE (c-g-c)
=> DE = BC (2 cạnh t/ứng)
=> đpcm
b) Gọi O là giao điểm của DE và BC
Do tgiac ABC = ADE (cmt) nên góc AED (OEB) = góc ACB
=> góc OEB + góc B = góc B + ACB
Do tgiac ABC vuông tại A nên góc B + ACB = 90 độ (tổng 3 góc trong 1 tgiac là 180 độ)
=> góc OEB + B = 90 độ
Xét tgiac OBE có góc OEB + B = 90 độ => góc EOB = 90 độ
=> DE vuông góc BC (đpcm)
c) 4. góc B = 5. góc C => góc B = 5/4. góc C
Mà tổng góc B + góc C = 90 độ
=> (tổng tỉ) => góc C = 40 độ
=> góc AED = 40 độ
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC
a: góc B=2/3*90=60 độ
góc C=90-60=30 độ
b: \(BC=\sqrt{6^2+8^2}=10\)
c: \(AB=\sqrt{5^2-\left(\dfrac{5}{2}\sqrt{3}\right)^2}=2.5\left(cm\right)\)