K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: O là tâm đường tròn ngoại tiếp ΔABC 

nên OA=OB=OC

Ta có: ΔBAC vuông tại A

nên A nằm trên đường tròn đường kính BC

=>O thuộc BC

b: Sửa đề: \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

Xét (O) có

góc BCA là góc nội tiếp chắn cung BA

góc BDA là góc nội tiếp chắn cung BA

Do đó: \(\widehat{BCA}=\widehat{BDA}\left(1\right)\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\widehat{OCA}\)

=>\(\widehat{AOB}=2\cdot\widehat{BCA}\)(2)

Từ (1) và (2) suy ra \(\widehat{AOB}=2\cdot\widehat{BCA}=2\cdot\widehat{BDA}\)

c: Xét (O) có

góc AOD là góc ở tâm chắn cung AD

góc ACD là góc nội tiếp chắn cung AD

Do đó: \(\widehat{AOD}=2\cdot\widehat{ACD}\)