K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Xét ΔCED vuông tại E có \(EC^2+ED^2=CD^2\)

=>\(EC^2=CD^2-ED^2\)

Xét ΔEDB vuông tại E có \(EB^2+ED^2=BD^2\)

=>\(EB^2=BD^2-ED^2\)

Xét ΔDAB vuông tại A có \(DA^2+AB^2=DB^2\)

=>\(EB^2=BD^2-ED^2=DA^2+AB^2-ED^2\)

\(EB^2-EC^2\)

\(=DA^2+AB^2-ED^2-CD^2+ED^2\)

\(=AB^2+CD^2-CD^2=AB^2\)

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

20 tháng 11 2015

tick mình đi mình giải choBlog.Uhm.vN

20 tháng 11 2015

Đỗ Lâm Quỳnh Anh bn giải gió hả

Bài 3: 

1: 

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Xét tứ giác BEFD có 

DF=BE

DF//BE

Do đó; BEFD là hình bình hành

2: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(Cm^2\right)\)