K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2022

-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo nhé!

-Gọi G là trung điểm của CD.

-△ADC có: E là trung điểm AD, G là trung điểm CD.

\(\Rightarrow\)EG là đường trung bình của △ADC 

\(\Rightarrow\)EG//AC mà AC⊥AB tại A \(\Rightarrow\)EG⊥AB

-△ABG có AE là đường cao (AE⊥BG tại D) ; GE là đường cao (GE⊥AB)  ; AE cắt GE tại E.  \(\Rightarrow\)E là trực tâm của △ABG.

\(\Rightarrow\)BE⊥AG.

△DCF có: A là trung điểm DF ; G là trung điểm CD.

\(\Rightarrow\)AG là đường trung bình của △DCF.

\(\Rightarrow\)AG//FC mà BE⊥AG \(\Rightarrow\)BE⊥FC.

-△BCF có: FE là đường cao (FE⊥BC tại D) ; BE là đường cao (BE⊥FC) ; BE cắt FE tại E \(\Rightarrow\)E là trực tâm của △BCF 

\(\Rightarrow\)CE⊥BF

 

24 tháng 3 2022

ai làm giúp mình với ạ 

24 tháng 3 2022

TỰ NGHĨ NHAK

Bài 2: 

a: Ta có: ΔAEH vuông tại E

mà EI là đường trung tuyến

nên IE=AH/2(1)

Ta có: ΔADH vuông tại D

mà DI là đường trung tuyến

nên DI=AH/2(2)

Từ (1) và (2) suy ra IE=ID

b: Xét tứ giác BEDC có 

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ME=MD

hay M nằm trên đường trung trực của ED(1)

Ta có: IE=ID

nên I nằm trên đường trung trực của ED(2)

Từ (1) và (2) suy ra IM là đường trung trực của ED

hay D đối xứng với E qua IM

25 tháng 7 2023

Ai giúp em với ạ

25 tháng 7 2023

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.