K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 5 2018
a) Xét ΔABM và ΔDCM có
\(\widehat{A}=\widehat{D}=90^o\)
\(\widehat{M1}=\widehat{M2}\) (đối đỉnh)
=> ΔABM ~ ΔDCM (g-g) (đpcm)
a, Xét tam giác ABM và tam giác DCM
\(\widehat{DMC}=\widehat{AMB}\) (dđ)
\(\widehat{CDM}=\widehat{BAM}\) (90o)
\(\Rightarrow\) tam giác ABM đồng dạng với tam giác DCM (g.g)
b,Vì tam giác ABC vuông tại A nên theo định lí Py-ta-go:
\(AC^2=BC^2-AB^2=10^2-6^2=64\Rightarrow AC=\sqrt{64}=8\)Mà BM là đường trung tuyến của tam giác ABC \(\Rightarrow AM=MC=\dfrac{1}{2}AC=4\)
Tam giác ABM vuông tại A nên theo định lí Py-ta-go\(\Rightarrow BM^2=AB^2+AM^2=6^2+4^2=52\Rightarrow BM=\sqrt{52}\)
Vì tam giác ABM và TAm giác BCM đồng dạng \(\Rightarrow\dfrac{AB}{BM}=\dfrac{CD}{CM}=\dfrac{6}{\sqrt{52}}=\dfrac{CD}{4}\Rightarrow CD=\dfrac{4.6}{\sqrt{52}}\approx3cm\)