Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I D K E
#)Giải :
a)Xét \(\Delta AID\)và \(\Delta AIH\)có :
ID = IH ( I là trung điểm của DH )
IA là cạnh chung
=> \(\Delta AID=\Delta AIH\) ( cạnh góc vuông - cạnh góc vuông )
a: Xét ΔADI vuông tại I và ΔAHI vuông tại I có
AI chung
ID=IH
Do đó;ΔADI=ΔAHI
b: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{BAH}=\widehat{BAD}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
hay AD vuông góc với BD
c: \(AH=\sqrt{9\cdot16}=3\cdot4=12\left(cm\right)\)
a) Tam giác ADI và AHI có
AI cạnh chung
AID=AIH=90 độ
ID=IH(gt)
vậy tam giác ADI=AHI(c.g.c)
b) xét tam giác BID và BIH có
BI cạnh chung
BID=BIH=90 độ
ID=IH(gt)
vậy tam giác BID=BIH(c.g.c)
=>DBI=HBI(góc tuognư ứng
xét tam giác ABD và ABH có
DAB=HAB( vì tam giác AID=AIH)
AB cạnh chung
DBA=HBA(cmt)
vậy tam giác ABD=ABH(g.c.g)
=> ADB=AHB=90 độ
hay AD vuông góc với BD.
c)BC=HB+HC=9+16=25(cm)
Áp dụng định lí pi-ta-go vào tam giác ABH, ta có
\(AB^2=AH^2+HB^2=AH^2+9^2=AH^2+81\)
Áp dụng định lí pi-ta-go vào tam giác ACH, ta có
\(AC^2=AH^2+HC^2=AH^2+16^2=AH^2+256\)
Áp dụng định lí pi-ta-go vào tam giác ACH, ta có
\(BC^2=AB^2+AC^2\)
hay \(25^2=AH^2+81+AH^2+256\)
\(625=2AH^2+337\)
\(2AH^2=625-337=288\)
\(AH^2=\frac{288}{2}=144\)
\(AH=\sqrt{144}=12\left(cm\right)\).
Câu a), b), c) bạn tham khảo tại đây nhé: Câu hỏi của Sky Mtp
Còn câu d) thì ở đây nhé: Câu hỏi của Hana Huyền Ngọc
Chúc bạn học tốt!
câu a theo hình của mình thì làm được rồi nhưng câu b mtheo hình của mình thì lại thấy kì kì bạn thử vẽ hình hộ mình được không
a) Xét ΔADI và ΔAHI , có :
ID = IH ( I là trung điểm của DH )
IA chung
góc AID = góc AIH = 90o
=> ΔADI = ΔAHI (c.g.c)