Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
A B C E
a: BC=10cm
b: Xét ΔBHD vuông tại H và ΔBAC vuông tại A có
BD=BC
góc B chung
=>ΔBHD=ΔBAC
c: Xét ΔBAE vuông tạiA và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
`Answer:`
a. Vì `\triangleABC` vuông tại `A` nên theo định lí Pytago, ta có:
\(AB^2=BC^2-AC^2\Leftrightarrow AB^2=13^2-12^2\Leftrightarrow AC^2=169-144=25\Leftrightarrow AC=5cm\)
b. Xét `\triangleABD` và `\triangleEBD:`
`BD` chung
`BA=BE`
`\hat{ABD}=\hat{EBD}`
`=>\triangleABD=\triangleEBD(c.g.c)`
c. Theo phần b. `\triangleABD=\triangleEBD`
`=>\hat{BAD}=\hat{BED}=90^o`
`=>DE⊥BC`
d. Xét `\triangleADF` và `triangleEDC:`
`AD=DE`
`\hat{DAF}=\hat{DEC}=90^o`
`\hat{ADF}=\hat{EDC}`
`=>\triangleADF=\triangleEDC(g.c.g)`
`=>AF=BC`
a) *Xét ΔABD & ΔEBD
+)AB=BE
+)^ABD=^DBC
+)chung BD
=>ΔABD=ΔEBD(cgc)
b) vì ΔABD=ΔEBD(cmt)
=>^A=^BED(2 góc tg ứng)
=>^BED=90°(^A=90°)
=>DE vg góc vs BC
c) vì ΔBAC vg ở A
=>^BAH+^HAC=90° (1)
Lại có :ΔAHC vg ở H
=>^HAC+^ACB=90° (2)
Từ (1),(2)=>^BAH=^ACB(đpcm)
Ta có :
a) *Xét ΔABD & ΔEBD
+)AB=BE
+)^ABD=^DBC
+)chung BD
=>ΔABD=ΔEBD(cgc)
b) vì ΔABD=ΔEBD(cmt)
=>^A=^BED(2 góc tg ứng)
=>^BED=90°(^A=90°)
=>DE vg góc vs BC
c) vì ΔBAC vg ở A
=>^BAH+^HAC=90° (1)
Lại có :ΔAHC vg ở H
=>^HAC+^ACB=90° (2)
Từ (1),(2)=>^BAH=^ACB(đpcm)
3 5 B A C E D
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )
\(\Rightarrow3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )
b ) Xét 2 \(\Delta\)vuông ABE và DBE có :
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(AB=DB\left(gt\right)\)
BE : cạnh chung
Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)
Hay BE là tia phân giác của \(\widehat{ABC}\)
c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)
\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )
+ Xét \(\Delta DEC\)vuông tại D (gt) có :
Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )
\(\Rightarrow EC>DE\)
Mà \(DE=AE\left(cmt\right)\)
\(\Rightarrow EC>AE\)
Hay \(AE< EC\)
d ) Vì \(AB=DB\left(gt\right)\)
\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)
+ Vì \(AE=DE\left(cmt\right)\)
\(\Rightarrow E\)thuộc đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)
Chúc bạn học tốt !!!
a: BC=10cm
b: Xét ΔBAC vuông tại A và ΔBHD vuông tại H có
BC=BD
góc B chung
Do đó:ΔBAC=ΔBHD
c: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{ABE}=\widehat{HBE}\)
hay BE là tia phân giác của góc ABC