Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDCH có
BD//CH
BH//CD
Do đó: BDCH là hình bình hành
a/ Do H là trực tâm => BH vuông góc với AC mà DC vuông góc với AC => BH//CD
Tương tự cũng có CH//BD
=> BDCH là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một là hbh)
b/ Xét tứ giác ABDC có tổng các góc trong =360
=> ^BAC+^BDC+^ABD+ACD=^BAC+^BDC+90+90=360 => ^BAC+^BDC=180
c/ Nối H với D cắt BC tại M', do BDCH là hình bình hành => M'B=M'C (t/c đường chéo hbh) => M trùng M' => H; M; D thẳng hàng
d/ Xét tam giác ADH có
OA=OD
MH=MD (t/c đường chéo hbh)
=> OM là đường trung bình của tg ADH => OM = 1/2 AH
bạn giúp mình bài tập này với
1. phân tích đa thức thành nhân tử
a) 5x(3 - 2x) - 7 (2x - 3)
b) x^3 - 4x^2 + 4x
c) x^2 + 5x + 6
2. cho biểu thức : M= (4x + 3) ^2 - 2x (x + 6) - 5 (x - 2) (x + 2)
a. rút gọn M
b. chứng minh M luôn dương.
( bạn cg giúp mình nhá. mình cảm ơn trc )
a)Ta có :BH song song với DC (cùng vuông góc với AC).
HC song song DB (cùng vuông góc với AB).
=> BDHC là hình bình hành.
b)Vì M là giao điểm của 2 đường chéo của hình bình hành BDHC.
=>M là trung điểm của HC.
mà N là trung điểm của AD.
=>MN là đường trung bình của tam giác AHD.
=>MN song song với AH mà AH vuông góc với BC.
=>MN vuông góc với BC.
MN là đường trung bình của tam giác AHC.
=>MN=1/2 HA.
hay AH = 2MN.
Bạn tự vẽ hình nhé!
À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá
1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .
Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC
=> CH là đường cao thứ 3 của \(\Delta\) ABC
=> CH \(\perp\) AB (1)
mà BD \(\perp\) AB (gt) => CH//BD
Có BH \(\perp\) AC (BE là đường cao)
CD \(\perp\) AC
=> BH//CD (2)
Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành
2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM
Có O là trung điểm của AD hay OA = OD
Xét \(\Delta\) AHD có:
HM = DM
OA = OD
=> OM là đường trung bình của \(\Delta\) AHD
=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM
XONG !!