Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)
hay \(AB=\sqrt{225}=15cm\)
Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\frac{CM}{BC}=\frac{AM}{AB}\)
hay \(\frac{CM}{25}=\frac{AM}{15}\)
Ta lại có: CM+AM=AC=20cm(M nằm giữa A và C)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{CM}{25}=\frac{AM}{15}=\frac{CM+AM}{25+15}=\frac{AC}{40}=\frac{20cm}{40}=\frac{1}{2}\)
Do đó: \(CM=\frac{25\cdot1}{2}=12,5cm\)
Vậy: AB=15cm; CM=12,5cm
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E D H M
a) Xét tam giác EDB và tam giác EAC có:
\(\hept{\begin{cases}\widehat{E}chung\\\widehat{EAC}=\widehat{EDB}=90^0\end{cases}\Rightarrow\Delta EDB~EAC\left(g.g\right)}\)
\(\Rightarrow\frac{ED}{EB}=\frac{EA}{EC}\)( các cạnh tương ứng tỉ lệ )
\(\Rightarrow\frac{ED}{EA}=\frac{EB}{EC}\)
Xét tam giác EDA và EBC có:
\(\hept{\begin{cases}\widehat{E}chung\\\frac{ED}{EA}=\frac{EB}{EC}\left(cmt\right)\end{cases}\Rightarrow\Delta EDA~\Delta EBC\left(g.g\right)}\)
\(\Rightarrow\widehat{EDA}=\widehat{EBC}\)
b) Kẻ \(MH\perp BC\)\(\left(H\in BC\right)\)
Xét tam giác BMH và tam giác BCD có:
\(\hept{\begin{cases}\widehat{DBC}chung\\\widehat{BHM}=\widehat{BDC}=90^0\end{cases}\Rightarrow\Delta BMH~\Delta BCD\left(g.g\right)}\)
\(\Rightarrow\frac{BM}{BH}=\frac{BC}{BD}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow BM.BD=BH.BC\left(1\right)\)
Xét tam giác CMH và tam giác CBA có:
\(\hept{\begin{cases}\widehat{BCA}chung\\\widehat{CHM}=\widehat{CAB}=90^0\end{cases}\Rightarrow\Delta CMH~\Delta CBA\left(g.g\right)}\)
\(\Rightarrow\frac{CM}{CH}=\frac{CB}{CA}\)( các cạnh t.ứng tỉ lệ )
\(\Rightarrow CM.CA=CH.CB\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BM.BD+CM.CA=BC.BH+BC.CH\)
\(\Rightarrow BM.BD+CM.CA=BC.\left(BH+HC\right)\)
\(\Rightarrow BM.BD+CM.CA=BC^2\)không đổi
Vậy khi M di chuyển trên AC thì tổng \(BM.BD+CM.CA\)có giá trị không đổi
a: AB=15cm
Xét ΔABC có BM là phân giác
nên AM/AB=MC/BC
=>AM/15=MC/25
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{15}=\dfrac{MC}{25}=\dfrac{AM+MC}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: CM=12,5(cm)
b: Xét ΔNAC vuông tại A và ΔNDB vuông tại D có
\(\widehat{N}\) chung
Do đó: ΔNAC\(\sim\)ΔNDB
Suy ra: NA/ND=NC/NB
hay \(NA\cdot NB=ND\cdot NC\)