ΔABC nhọn,kẻ 2 đường cao BE và CF cắt nhau tại H.

a)ΔABE∼Δ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

A B E C F H

a) Xét \(\Delta ABE,\Delta ACF\) có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AEB}=\widehat{AFC}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

b) Xét \(\Delta BFH,\Delta CEH\) có :

\(\left\{{}\begin{matrix}\widehat{BFH}=\widehat{CEH}=90^o\\\widehat{BHF}=\widehat{CHE}\left(\text{Đối đỉnh}\right)\end{matrix}\right.\)

=> \(\Delta BFH\sim\Delta CEH\left(g.g\right)\)

\(\Rightarrow\dfrac{CH}{BH}=\dfrac{EH}{CF}\)

\(\Rightarrow CH.CF=BH.EH\)

10 tháng 4 2018

phần b sai rồi bạn

18 tháng 6 2020

A B C F E K H

a) Xét tam giác AFC và tam giác AEB có: 

^A chung 

^F vuông góc ^E

Vậy: tam giác AFC đồng dạng tam giác AEB (g.g)

vì tam giác AFC đồng dạng tam giác AEB (cmt) nên: 

=> AF/AC = AE/AB 

=> AE.AC = AF.AB (đpcm)

b) từ H kẻ HK vuông góc BC

+) xét tam giác BKH và tam giác BEC có: 

^HBC chung

^BKH = ^BEC (= 90 độ)

vậy: tam giác BKH đồng dạng tam giác BEC (g.g)

=> BK/BH = BE/BC

=> BH.BE = BK.BC (1)

+) xét tam giác CKH và tam giác CFB: 

^BHC chung

^CKH = ^CFB (= 90 độ)

vậy: tam giác CKH đồng dạng tam giác CFB 

=> CK/CH = CF/CB

=> CH.CF = BC.CK (2)

Từ (1) và (2) ta có: 

BH.BE + CH.CF = BK.BC + CK.BC

                           = BC.(BK + CK)

                           = BC.BC

                           = BC^2 

=> BH.BE + CH.CF = BC^2 (đcpm)

7 tháng 5 2019

2/Xét ∆ABD và ∆ACE có:

chung

∆ABD ∽ ∆ACE (g.g)

b.

Xét ∆HDC và ∆HEB có:

(vì BD AC, CE AB)

(đ đ)

∆HDC ∽ ∆HEB(g.g)

\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)

c.Vì H là giao điểm của 2 đường cao CE,BD

H là trực tâm của ∆ABC

AH BC tại F

Xét ∆CIF và ∆CFA có:

: chung

(vì AF BC, FI AC)

∆CIF ∽ ∆CFA (g.g)

Bạn tự vẽ hình nha

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

Do đó: ΔAEB\(\sim\)ΔAFC

SUy ra:AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc EBC chung

Do đó; ΔDBH\(\sim\)ΔEBC

SUy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

c: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{AHF}=\widehat{CHD}\)

Do đó: ΔHFA\(\sim\)ΔHDC

Suy ra: HF/HD=HA/HC

hay \(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tạiE có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HE=HC\cdot HF\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó; ΔABE đồng dạng với ΔACF

Suy ra: AE/AF=AB/AC

hay AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc BAC chung

DO đó: ΔAEF đồng dạng với ΔABC

c: Xét ΔIBF và ΔIEC có

góc IBF=góc IEC

góc BIF chung

Do đó: ΔIBF đồng dạg vớiΔIEC

Suy ra: IB/IE=IF/IC

hay \(IB\cdot IC=IE\cdot IF\)