ΔABC nhọn ,các đường cao AD ,BE ,CF cắt nhau tại H.

a) CMR:<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

mk vẽ hình ko đc chuẩn nha bn leu
A B C F E H D

1 tháng 5 2019

a)

* Xét 2 ΔBDA và ΔBFC, ta có:

gócF = gócD = 90độ

gócB chung

⇒ΔBDA ∼ ΔBFC (g.g)

\(\frac{BD}{BF}=\frac{BA}{BC}\) ⇔ BD.BC=BF.BA

mk chỉ bt giải ngang đây thui nha bn ❤

7 tháng 5 2019

2/Xét ∆ABD và ∆ACE có:

chung

∆ABD ∽ ∆ACE (g.g)

b.

Xét ∆HDC và ∆HEB có:

(vì BD AC, CE AB)

(đ đ)

∆HDC ∽ ∆HEB(g.g)

\(\frac{HD}{HE}=\frac{HC}{HB}< =>HD.HB=HE.HC\)

c.Vì H là giao điểm của 2 đường cao CE,BD

H là trực tâm của ∆ABC

AH BC tại F

Xét ∆CIF và ∆CFA có:

: chung

(vì AF BC, FI AC)

∆CIF ∽ ∆CFA (g.g)

Bạn tự vẽ hình nha
29 tháng 3 2018

a)   Xét   \(\Delta BDA\)và    \(\Delta BFC\) có:

\(\widehat{BDA}=\widehat{BFC}=90^0\)

\(\widehat{ABC}\) chung

suy ra:   \(\Delta BDA~\Delta BFC\)

\(\Rightarrow\)\(\frac{BD}{BF}=\frac{BA}{BC}\)

\(\Rightarrow\)\(BD.BC=BA.BF\)

a: \(3x^2+y^2+10x-2xy+26=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)

b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE