Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAB\)và \(\Delta OCD\)có:
\(\widehat{AOB}=\widehat{COD}\) (đối đỉnh)
\(\widehat{OAB}=\widehat{OCD}\) (slt do AB // CD)
suy ra: \(\Delta OAB~\Delta OCD\) (g.g)
b) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)
\(\Rightarrow\)\(OC=\frac{OA.OD}{OB}=\frac{8}{3}\)cm
c) \(\Delta OAB~\Delta OCD\) (câu a)
\(\Rightarrow\)\(\frac{S_{OAB}}{S_{OCD}}=\left(\frac{AB}{CD}\right)^2=\frac{1}{4}\)
Ta có:
M N B C = 3 6 = 1 2 , P N C A = 2 , 5 5 = 1 2 , P M A B = 2 4 = 1 2 ⇒ M N B C = P N C A = P M A B = 1 2
Vậy ΔPMN ~ ΔABC (c - c - c)
Suy ra tỉ số đồng dạng k của hai tam giác là k = M N B C = 1 2
⇒ S M N P S A B C = k 2 = ( 1 2 ) 2 = 1 4
Đáp án: B
Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có:
k=AB/MN=2