Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm AB và CD
G là giao điểm CE và AB
I là giao điểm CF và AB
Vì K là trung điểm của AB => AK = KB = 1/2 AB
Xét tam giác ACD, có:
CE là đường trung tuyến ứng với AD (E là trung điểm AD)
AK là đường trung tuyến ứng với CD ( K là trung điểm CD)
=> G là trong tâm của tam giác ACD ( giao điểm 2 đường trung tuyến)
=> GK = 1/3 AK = 1/3 BK (*)
và AG = 2/3 AK = 1/3 AB (1)
Xét tam giác BCD, có:
CF là đường trung tuyến ứng với BD (F là trung điểm BD)
BK là đường trung tuyến ứng với CD (K là trung điểm CD)
=> I là trong tâm của tam giác BCD (giao điểm 2 đường trung tuyến)
=> IK = 1/3 BK (**)
và BI = 2/3 BK = 1/3 AB (2)
Từ (*) và (**) => IK + GK = 1/3 BK + 1/3 BK = 2/3 BK = 1/3 AB (3)
Từ 1 2 và 3 => AG = GI = IB = 1/3 AB
Vậy CE và CF chia AB làm 3 đoạn bằng nhau
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^
a) Xét ΔABD và ΔACD có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
b) Ta có: ΔABD=ΔACD(cmt)
nên BD=CD(hai cạnh tương ứng)
hay D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
CF là đường trung tuyến ứng với cạnh AB(gt)
AD cắt CF tại G(gt)
Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)
c) Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
Xét ΔADC có
H là trung điểm của CD(gt)
HE//AD(cùng vuông góc với BC)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔADC vuông tại D(cmt)
mà DE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(DE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay DE=EC
Xét ΔDEC có ED=EC(cmt)
nên ΔDEC cân tại E(Định nghĩa tam giác cân)
a/
O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC
Nối AO cắt đường trong (O) tại E ta có
\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow BE\perp AB\)
H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)
=> BE//CH (1)
Ta có
\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow CE\perp AC\)
H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)
=> CE//BH (2)
Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME
Xét tg AHE có
MH=ME (cmt)
OA=OE
=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\)
b/
Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)
\(AH\perp BC\)
=> OM//AH
Xét tg AGH có
IA=IG (gt)
KH=KG (gt)
=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)
=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)
IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)
G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)
=> IG=GM (6)
Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)
c/
Nối H với O cắt AM tại G' Xét tg AHE
MH=ME (cmt) => AM là trung tuyến của tg AHE
OA=OE => HO là trung tuyến của tg AHE
=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)
Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)
\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng
d/
Do G là trọng tâm của tg AHE => GH=2GO