K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2. ΔABC có 𝐴̂ = 900 . Lấy M trên BC vẽ MH ⊥ AB, MK ⊥ AC.a) So sánh 𝐵𝑀𝐻 ̂ và 𝐵𝐶𝐴 ̂, 𝐻𝐵̂𝑀 và 𝐾𝑀𝐶 ̂b) Tính 𝐻𝑀𝐾 ̂Bài 3. ΔABC có 𝐴̂ = 60 0 , AD là phân giác của góc A (D ∈ BC). Từ D vẽ đường thẳng song song với AB cắt AC ở M. Từ M vẽ MK // AD và cắt BC tại K.a) Tính 𝐵𝐴𝐷 ̂, 𝐷𝑀𝐾 ̂, 𝐴𝐷𝑀̂;b) Chứng minh rằng MK là phân giác của góc 𝐷𝑀𝐶 ̂.Bài...
Đọc tiếp

Bài 2. ΔABC có 𝐴̂ = 900 . Lấy M trên BC vẽ MH ⊥ AB, MK ⊥ AC.

a) So sánh 𝐵𝑀𝐻 ̂ và 𝐵𝐶𝐴 ̂, 𝐻𝐵̂𝑀 và 𝐾𝑀𝐶 ̂

b) Tính 𝐻𝑀𝐾 ̂

Bài 3. ΔABC có 𝐴̂ = 60 0 , AD là phân giác của góc A (D ∈ BC). Từ D vẽ đường thẳng song song với AB cắt AC ở M. Từ M vẽ MK // AD và cắt BC tại K.

a) Tính 𝐵𝐴𝐷 ̂, 𝐷𝑀𝐾 ̂, 𝐴𝐷𝑀̂;

b) Chứng minh rằng MK là phân giác của góc 𝐷𝑀𝐶 ̂.

Bài 4. Cho ΔABC. Tia phân giác của góc B và C cắt nhau ở I. Từ I kẻ đường thẳng song song vớ BC cắt AB ở F và AC ở E.

a) Chứng minh 𝐷𝐼𝐵̂ = 𝐷𝐵𝐼 ̂

b) Chứng minh 𝐸𝐼𝐶̂ = 𝐸𝐶𝐼 ̂ . Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.

Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.

MÌNH BT LÀ DÀI NHƯNG MN AI ÓC THỜI GIAN THÌ GIÚP MÌNH Ạ

CHÂN THÀNH CẢM ƠN

0
18 tháng 7 2021

undefined

Vậy ΔDEF đều

b) Vì AD là tia phân giác của ∠BAC (gt)

⇒ ∠DAB = ∠DAC = 1/2∠BAC = 60o

Vì AD//MC (gt)

⇒ ∠AMC = ∠DAB = 60o (hai góc nằm ở vị trí đồng vị)

∠AMC = ∠CAD = 60o (hai góc nằm ở vị trí so le trong)

Xét ΔAMC có:

Hai góc bằng nhau và bằng 60o 

⇒ ΔAMC đều

Vậy ΔAMC đều

Còn lại bạn tự làm nhé

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

12 tháng 3 2020

Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.

a, Xét △FDA vuông tại F và △EDA vuông tại E

Có: DA là cạnh chung

      ^FAD = ^EAD (gt)

=> △FDA = △EDA (ch-gn)

=> DF = DE (2 cạnh tương ứng)

=> △DEF cân tại D   (1)

Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o

Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> 60o + ^FDA = 90o  => ^FDA = 30o  

Mà ^FDA = ^EDA (△FDA = △EDA)  => ^EDA = 30o

Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o  (2)

Từ (1) và (2) => △DEF đều

b, Ta có: AI = AF + FI  và AK = AE + EK

Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)

=> AI = AK

Xét △IAD và △KAD 

Có: AI = AK (cmt)

  ^IAD = ^KAD (gt)

   AD là cạnh chung

=> △IAD = △KAD (c.g.c)

=> ID = KD (2 cạnh tương ứng)

=> △IDK cân tại D

c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)

Mà ^DAB = 60o  => ^CMB = 60 => ^CMA = 60o  (3)

Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)

=> ^CAM + 120o = 180o   => ^CAM = 60o   (4)

Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o  => △MAC đều 

=> AC = AM = MC

Vì △ vuông FAD có: ^FDA = 30o (cmt)

=> AD = 2 . AF 

=> AD = 2 . (AC - CF)

=> AD = 2 . (CM - CF) = 2 . (m - n)

18 tháng 7 2017

a) \(DE⊥AB\) (giả thiết)

\(\Rightarrow\widehat{DEA}=\widehat{DEK}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DEA\) vuông tại E (định nghĩa)

\(DF⊥AC\) (giả thiết)

\(\Rightarrow\widehat{DFA}=\widehat{DFI}=90\text{°}\) (định nghĩa)

\(\Rightarrow\Delta DFA\) vuông tại F (định nghĩa)

\(\Delta DEA\) vuông tại E và \(\Delta DFA\) vuông tại F có:

\(\widehat{DAE}=\widehat{DAF}\) (AD là phân giác \(\widehat{BAC}\))

AD chung

\(\Rightarrow\Delta DEA=\Delta DFA\) (cạnh huyền - góc nhọn)

\(\Rightarrow DE=DF\) (cặp cạnh tương ứng);

\(\widehat{EDA}=\widehat{FDA}\) (cặp góc tương ứng)

AD là phân giác \(\widehat{BAC}\) (giả thiết)

\(\Rightarrow\widehat{DAE}=\widehat{DAF}=\frac{\widehat{BAC}}{2}=\frac{120\text{°}}{2}=60\text{°}\) (định nghĩa)

\(\Delta DEA\) vuông tại E (chứng minh trên)

\(\Rightarrow\widehat{DAE}+\widehat{EDA}=90\text{°}\) (tính chất tam giác vuông)

\(60\text{°}+\widehat{EDA}=90\text{°}\)

\(\widehat{EDA}=30\text{°}\)

\(\widehat{EDA}=\widehat{FDA}\) (chứng minh trên)

\(\Rightarrow\widehat{FDA}=30\text{°}\)

\(\widehat{EDF}=\widehat{EDA}+\widehat{FDA}=30\text{°}+30\text{°}=60\text{°}\)

b) \(\Delta DEK\) và \(\Delta DFI\) có:

DE = DF (chứng minh a)

\(\widehat{DEK}=\widehat{DFI}\left(=90\text{°}\right)\)

EK = FI (giả thiết)

\(\Rightarrow\Delta DEK=\Delta DFI\left(c.g.c\right)\)

\(\Rightarrow DK=DI\) (cặp cạnh tương ứng)

c) \(\widehat{BAC}+\widehat{MAC}=180\text{°}\) (2 góc kề bù)

\(120\text{°}+\widehat{MAC}=180\text{°}\)

\(\widehat{MAC}=60\text{°}\)

CM // AD (giả thiết)

\(\Rightarrow\widehat{ACM}=\widehat{DAF}=60\text{°}\) (2 góc so le trong)

Xét \(\Delta AMC\) có: \(\widehat{MAC}+\widehat{ACM}+\widehat{CMA}=180\text{°}\) (tổng 3 góc trong một tam giác)

Thay số: \(60\text{°}+60\text{°}+\widehat{CMA}=180\text{°}\)

\(120\text{°}+\widehat{CMA}=180\text{°}\)

\(\widehat{CMA}=60\text{°}\)

d) Kẻ FG ∩ AD = {G} sao cho FG = AG

\(\Rightarrow\Delta FAG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\widehat{DAF}=60\text{°}\) (chứng minh a)

\(\Rightarrow\Delta FAG\) đều (dấu hiệu nhận biết tam giác đều)

\(\Rightarrow\widehat{AFG}=60\text{°}\) (tính chất tam giác đều);

AF = FG = AG (định nghĩa tam giác đều) (1)

\(\widehat{AFG}+\widehat{DFG}=\widehat{DFA}\)

\(60\text{°}+\widehat{DFG}=90\text{°}\)

\(\widehat{DFG}=30\text{°}\)

\(\widehat{FDA}=30\text{°}\) (chứng minh a)

\(\Rightarrow\Delta DFG\) cân tại G (dấu hiệu nhận biết tam giác cân)

\(\Rightarrow DG=FG\) (định nghĩa tam giác cân) (2)

Từ (1) và (2) \(\Rightarrow AG=DG\)

\(G\in AD\)

\(\Rightarrow\) G là trung điểm AD (định nghĩa)

\(\Rightarrow AG=\frac{AD}{2}=\frac{4}{2}=2\left(cm\right)\)

mà AF = AG (chứng minh trên)

\(\Rightarrow AF=2cm\)

10 tháng 2 2018

phịch