K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHEB vuông tại E và ΔHFC vuông tại F có

\(\widehat{EHB}=\widehat{FHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB~ΔHFC

b: Xét ΔAEH vuông tại E và ΔADB vuông tại D có

\(\widehat{EAH}\) chung

Do đó: ΔAEH~ΔADB

=>\(\dfrac{AE}{AD}=\dfrac{AH}{AB}\)

=>\(AE\cdot AB=AH\cdot AD\)
c: Xét ΔAFB vuông tại F và ΔAEC vuông tại E có

\(\widehat{FAB}\) chung

Do đó: ΔAFB~ΔAEC

=>\(\dfrac{AF}{AE}=\dfrac{AB}{AC}\)

=>\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

Xét ΔAFE và ΔABC có

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAFE~ΔABC

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 9 2021

da

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

a: Xet ΔAFB vuông tại F và ΔAEC vuông tại E có

góc A chung

=>ΔAFB đồng dạng với ΔAEC

b: ΔAFB đồng dạng với ΔAEC

=>AF/AE=AB/AC
=>AF*AC=AB*AE

=>AF/AB=AE/AC

=>ΔAFE đồng dạng với ΔABC

c: Xét ΔBDH vuông tại D và ΔBFC vuông tại Fco

góc DBH chung

=>ΔBDH đồng dạng với ΔBFC

5 tháng 11 2017

Sửa đề: ΔABC vuông tại A

a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔDAB\(\sim\)ΔACB(g-g)

b) Xét ΔABC có

BE là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)

Ta có: ΔDAB\(\sim\)ΔACB(cmt)

nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)

Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)

hay \(AE\cdot AB=BD\cdot EC\)(đpcm)

 

9 tháng 4 2020

a) xét \(\Delta ADB\)zà \(\Delta AEC\)

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}=90^0\end{cases}}\)

\(=>\Delta ADB~\Delta AEC\left(g.g\right)\)

\(=>\frac{AD}{AE}=\frac{AB}{AC}=>AD.AC=AB.AE\left(dpcm\right)\)

\(taco\left(\frac{AD}{AE}=\frac{AB}{AC}=>\frac{AD}{AB}=\frac{AE}{AC}\right)\)

xét \(\Delta ADE\)zà \(\Delta ABCco\)

\(\hept{\begin{cases}\widehat{A}chung\\\frac{AD}{AB}=\frac{AE}{AC}\end{cases}=>\Delta ABE~\Delta ABC\left(c.g.c\right)}\)

=>\(\widehat{ADE}=\widehat{ABC}\left(dpcm\right)\)

9 tháng 4 2020

c) Xét tam giác AEC zà tam giác HDC óc

góc AEC= góc HDC =90 độ

góc HCE chung

=> tam giác AEC~ tam giác HDC 

=>\(\frac{AC}{HC}=\frac{EC}{DC}=>AC.DC=EC.HC\left(1\right)\)

xét tam giác BEC zà tam giác HEA có

góc BEC= góc AEH= 90 độ

góc BCE = góc  EAH ( cùng phụ zới góc EBC )

=> tam giác BEC ~ tam giác HEA (g.g)

=>\(\frac{BE}{HE}=\frac{EC}{EA}=>BE.EA=EC.HE\left(2\right)\)

từ 1 zà 2 suy ra

\(BE.BA+CD.CA=BH.BD+CH.CE\)

kẻ AH zuông goc zới BC cắt BC tại F

Tự CM \(\hept{\begin{cases}\Delta CFH~\Delta CEB\\\Delta BFH~\Delta BDC\end{cases}=>\hept{\begin{cases}CF.CB=CH.CE\\BF.BC=BH.BD\end{cases}=>BE.BA+CD.CA=CF.CB+BF.CB}}\)

\(=BC.\left(CF+BF\right)=BC^2\)