Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Lấy E thuộc tai đối của tia BC,Lấy F thuộc tia đối của tia CB sao cho CF = EB
Giải
a/Có: \(\widehat{ABC}+\widehat{ABE}=180^0\)
\(\widehat{ACB}+\widehat{ACF}=180^0\)
Lại có: \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
=> \(\widehat{ABE}=\widehat{ACF}\)
b/ Xét ΔABE và ΔACF ta có:
AB = AC (GT)
\(\widehat{ABE}=\widehat{ACF}\) (câu a)
EB = CF (GT)
=> ΔABE = ΔACF (c - g - c)
c/ Có: ΔABE = ΔACF (câu a)
=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng)
Hay: \(\widehat{HEB}=\widehat{KFC}\)
Xét ΔHBE và ΔKCF ta có:
EB = CF (GT)
\(\widehat{HEB}=\widehat{KFC}\) (cmt)
=> ΔHBE = ΔKCF (c.h - g.n)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔABD và ΔACE có
AB=AC
ˆABD=ˆACE
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE và ˆD=ˆE
Xét ΔHBD vuông tại H và ΔKEC vuông tại K có
BD=CE
ˆD=ˆE
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
ˆHAB=ˆKAC
Do đó: ΔABH=ΔACK
còn c chờ tý
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
=>BC//HK
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Hình bạn tự vẽ nha!
Sửa lại đề là \(CF=EB.\)
a) Ta có:
\(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{ABE}=180^0\\\widehat{ACB}+\widehat{ACF}=180^0\end{matrix}\right.\) (các góc kề bù).
Mà \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
=> \(\widehat{ABE}=\widehat{ACF}.\)
b) Xét 2 \(\Delta\) \(ABE\) và \(ACF\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABE}=\widehat{ACF}\left(cmt\right)\)
\(BE=CF\left(gt\right)\)
=> \(\Delta ABE=\Delta ACF\left(c-g-c\right).\)
c) Theo câu b) ta có \(\Delta ABE=\Delta ACF.\)
=> \(\widehat{AEB}=\widehat{AFC}\) (2 góc tương ứng).
Hay \(\widehat{HEB}=\widehat{KFC}.\)
Xét 2 \(\Delta\) vuông \(EBH\) và \(FCK\) có:
\(\widehat{BHE}=\widehat{CKF}=90^0\left(gt\right)\)
\(EB=FC\left(gt\right)\)
\(\widehat{HEB}=\widehat{KFC}\left(cmt\right)\)
=> \(\Delta EBH=\Delta FCK\) (cạnh huyền - góc nhọn) (đpcm).
Chúc bạn học tốt!