Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔADM có
AB=AD
BM=DM
AM chung
Do đó: ΔABM=ΔADM
b: ta có: ΔABM=ΔADM
=>\(\widehat{BAM}=\widehat{DAM}\)
=>\(\widehat{BAK}=\widehat{DAK}\)
Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
=>BK=DK
c: Ta có: ΔABK=ΔADK
=>\(\widehat{ABK}=\widehat{ADK}\)
Ta có: \(\widehat{ABK}+\widehat{EBK}=180^0\)(hai góc kề bù)
\(\widehat{ADK}+\widehat{CDK}=180^0\)(hai góc kề bù)
mà \(\widehat{ABK}=\widehat{ADK}\)
nên \(\widehat{EBK}=\widehat{CDK}\)
Xét ΔKEB và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKEB=ΔKDC
=>\(\widehat{BEK}=\widehat{CDK}\)
ΔKEB=ΔKDC
=>\(\widehat{BKE}=\widehat{DKC}\)
mà \(\widehat{DKC}+\widehat{BKD}=180^0\)(hai góc kề bù)
nên \(\widehat{BKE}+\widehat{BKD}=180^0\)
=>E,K,D thẳng hàng
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
a: Xét ΔABK và ΔCDK có
KA=KC
\(\widehat{AKB}=\widehat{CKD}\)
KB=KD
Do đó: ΔABK=ΔCDK
b: ΔABK=ΔCDK
=>\(\widehat{KAB}=\widehat{KCD}\)
mà hai góc này ở vị trí so le trong
nên AB//CD
c: ΔABK=ΔCDK
=>AB=CD
mà CD=CE
nên AB=CE
AB//CD
=>AB//CE
Xét tứ giác ABEC có
AB//CE
AB=CE
Do đó: ABEC là hình bình hành
=>AC=BE
d: Xét ΔABC có
I,K lần lượt là trung điểm của CB,CA
=>IK là đường trung bình của ΔABC
=>IK//AB
mà AB//DE
nên IK//DE
Xét ΔBCE có
M,I lần lượt là trung điểm của BE,BC
=>MI là đường trung bình của ΔBCE
=>MI//CE
=>MI//DE
MI//DE
KI//DE
mà MI,KI có điểm chung là I
nên M,I,K thẳng hàng
Tự vẽ hình được nha bạn ^^.
a, Vì M là trung điểm của đoạn thẳng BD
=> MB = MD = BD: 2
Xét tam giác ADM và tam giác ABM:
AM: Cạnh chung
AB = AD
MB = MD ( chứng minh trên )
Do đó: \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)
Phần b sai đề, vì phần c có liên quan đến phần b mà phần b sai đề => phần c cũng sai đề
Xét 2 tam giác ABM và ADM có
AB = AD
BM = DM => tam giác ABM = tam giác ADM (c.c.c)
Cạnh AM chung
=> A1 = A2
B1 = D1
M1 = M2
Vì M1 kề bù với M2
=> M1 + M2 = 180
=>2 M1 = 180
=> M1 = 90
=< M2 = 90
Vì M1 kề bù vs M4
M2 kề bù vs M3
=> M1 + M4 = M2 + M3 = 180
Mà M1 = M2 = 90
=> M4 = 180 - 90 = 90
M3 = 180 - 90 = 90
=> M3 = M4
Xét 2 tam giác KMD và KMB có :
M3 = M4
BM = DM => tam giác KMD = tam giác KMB (c.g.c)
MK là cạnh chung
=> BK = DK
Xét 2 tam giác ABK và ADK có :
AB = AD
BK = DK => tam giác ABK = ADK (c.c.c)
AK là cạnh chung
b) Đợi tý , tớ suy nghĩ đã
theo tớ , đề câu a phải là :
AM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK
Hình bạn tự vẽ nha
c. Chứng minh D, K, E thẳng hàng.
Ta có: ^EBK + ^ABK = 180 độ (2 góc kề bù)
^CDK + ^ADK = 180 độ (2 góc kề bù)
^ABK = ^ADK (tam giác ABK = tam giác ADK)
=> ^EBK = ^CDK
Xét tam giác EBK và tam giác CDK ta có:
EB = CD (gt)
^EBK = ^CDK (cmt)
BK = DK (tam giác ABK = tam giác ADK)
=> tam giác EBK = tam giác CDK (c - g - c)
=> ^EKB = ^CKD (2 góc tương ứng)
Mà 2 góc này ở vị trí đối đỉnh
Nên D, E, K thẳng hàng