K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Hình bạn tự vẽ nha

c. Chứng minh D, K, E thẳng hàng.

Ta có: ^EBK + ^ABK = 180 độ (2 góc kề bù)

           ^CDK + ^ADK = 180 độ (2 góc kề bù)

           ^ABK = ^ADK (tam giác ABK = tam giác ADK)

=> ^EBK = ^CDK

Xét tam giác EBK và tam giác CDK ta có:

EB = CD (gt)

^EBK = ^CDK (cmt)

BK = DK (tam giác ABK = tam giác ADK)

=> tam giác EBK = tam giác CDK (c - g - c)

=> ^EKB = ^CKD (2 góc tương ứng)

Mà 2 góc này ở vị trí đối đỉnh

Nên D, E, K thẳng hàng 

a: Xét ΔABM và ΔADM có

AB=AD

BM=DM

AM chung

Do đó: ΔABM=ΔADM

b: ta có: ΔABM=ΔADM

=>\(\widehat{BAM}=\widehat{DAM}\)

=>\(\widehat{BAK}=\widehat{DAK}\)

Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

=>BK=DK

c: Ta có: ΔABK=ΔADK

=>\(\widehat{ABK}=\widehat{ADK}\)

Ta có: \(\widehat{ABK}+\widehat{EBK}=180^0\)(hai góc kề bù)

\(\widehat{ADK}+\widehat{CDK}=180^0\)(hai góc kề bù)

mà \(\widehat{ABK}=\widehat{ADK}\)

nên \(\widehat{EBK}=\widehat{CDK}\)

Xét ΔKEB và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKEB=ΔKDC

=>\(\widehat{BEK}=\widehat{CDK}\)

ΔKEB=ΔKDC

=>\(\widehat{BKE}=\widehat{DKC}\)

mà \(\widehat{DKC}+\widehat{BKD}=180^0\)(hai góc kề bù)

nên \(\widehat{BKE}+\widehat{BKD}=180^0\)

=>E,K,D thẳng hàng

29 tháng 11 2016

c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)

và ABK = ADK (2 góc tương ứng)

Mà ABK + KBE = 180o (kề bù)

ADK + KDC = 180o (kề bù)

nên KBE = KDC

Xét Δ KBE và Δ KDC có:

BE = CD (gt)

KBE = KDC (cmt)

BK = DK (cmt)

Do đó, Δ KBE = Δ KDC (c.g.c)

=> BKE = DKC (2 góc tương ứng)

Lại có: BKD + DKC = 180o (kề bù)

Do đó, BKE + BKD = 180o

=> EKD = 180o

hay 3 điểm E, K, D thẳng hàng (đpcm)

29 tháng 11 2016

Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đingaingung

Đề sai rồi bạn

21 tháng 10 2023

a: Xét ΔABK và ΔCDK có

KA=KC

\(\widehat{AKB}=\widehat{CKD}\)

KB=KD

Do đó: ΔABK=ΔCDK

b: ΔABK=ΔCDK

=>\(\widehat{KAB}=\widehat{KCD}\)

mà hai góc này ở vị trí so le trong

nên AB//CD
c: ΔABK=ΔCDK

=>AB=CD

mà CD=CE
nên AB=CE

AB//CD

=>AB//CE

Xét tứ giác ABEC có

AB//CE

AB=CE

Do đó: ABEC là hình bình hành

=>AC=BE

d: Xét ΔABC có

I,K lần lượt là trung điểm của CB,CA

=>IK là đường trung bình của ΔABC

=>IK//AB

mà AB//DE

nên IK//DE

Xét ΔBCE có

M,I lần lượt là trung điểm của BE,BC

=>MI là đường trung bình của ΔBCE
=>MI//CE

=>MI//DE
MI//DE

KI//DE

mà MI,KI có điểm chung là I

nên M,I,K thẳng hàng

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

12 tháng 12 2016

Tự vẽ hình được nha bạn ^^.

a, Vì M là trung điểm của đoạn thẳng BD

=> MB = MD = BD: 2

Xét tam giác ADM và tam giác ABM:

AM: Cạnh chung

AB = AD

MB = MD ( chứng minh trên )

Do đó: \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)

Phần b sai đề, vì phần c có liên quan đến phần b mà phần b sai đề => phần c cũng sai đề

12 tháng 12 2016

b,c sai hả b

20 tháng 11 2016

D A C E K M B 1 2 1 2 3 4 1 2 1 2

Xét 2 tam giác ABM và ADM có

AB = AD

BM = DM => tam giác ABM = tam giác ADM (c.c.c)

Cạnh AM chung

=> A1 = A2

B1 = D1

M1 = M2

Vì M1 kề bù với M2

=> M1 + M2 = 180

=>2 M1 = 180

=> M1 = 90

=< M2 = 90

Vì M1 kề bù vs M4

M2 kề bù vs M3

=> M1 + M4 = M2 + M3 = 180

Mà M1 = M2 = 90

=> M4 = 180 - 90 = 90

M3 = 180 - 90 = 90

=> M3 = M4

Xét 2 tam giác KMD và KMB có :

M3 = M4

BM = DM => tam giác KMD = tam giác KMB (c.g.c)

MK là cạnh chung

=> BK = DK

Xét 2 tam giác ABK và ADK có :

AB = AD

BK = DK => tam giác ABK = ADK (c.c.c)

AK là cạnh chung

b) Đợi tý , tớ suy nghĩ đã

20 tháng 11 2016

theo tớ , đề câu a phải là :

AM cắt cạnh BC tại K.Chứng minh tam giác ABK=tam giác ADK