Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(BC=2BM=2\sqrt{AB^2-AM^2}=2.\sqrt{9}=6\).
b) Xét \(\Delta ABM\) và \(\Delta AMH\) có \(\widehat{AMB}=\widehat{AHM}=90^o;\widehat{BAM}=\widehat{MAH}\)
\(\Rightarrow\Delta ABM\sim\Delta AMH\left(g.g\right)\).
c) \(\Delta ABM\sim\Delta AMH\Rightarrow\dfrac{AB}{BM}=\dfrac{AM}{MH}\Rightarrow\dfrac{AB}{BE}=\dfrac{AM}{MF}\Rightarrow\Delta ABE\sim\Delta AMF\left(c.g.c\right)\Rightarrow\dfrac{AB}{AE}=\dfrac{AM}{AF}\Rightarrow AB.AF=AM.AE\).
d) Gọi T là trung điểm của HC.
Theo tính chất đường trung bình, ta có TF // MC nên TF \(\perp\) AM.
Mà MF \(\perp\) AT nên F là trực tâm của tam giác AMT.
Suy ra \(AF\perp MT\). Mà MT // BH (tính chất đường TB) nên AF \(\perp\) BH.
a: Xét tứ giác AKMH có
\(\widehat{AKM}=\widehat{AHM}=\widehat{KAH}=90^0\)
Do đó: AKMH là hình chữ nhật
b: Xét tứ giác BMKH có
MK//BH
MK=BH
Do đó: BMKH là hình bình hành
Suy ra: BK và MH cắt nhau tại trung điểm của mỗi đường
mà E là trung điểm của MH
nên E là trung điểm của BK
=>B,E,K thẳng hàng
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
Bn tự vẽ hình nha
a, Xét tứ giác HMKA có
góc MHA= 90 độ( mh ⊥ AB-gt)
góc MKA = 90 độ( MK⊥ AC - gt)
góc HAK = 90 độ( tam giác ABC ⊥ A-gt)
-> HMKA là hình chữ nhật ( tứ giác có 3 góc vuông)
-> HM song song AK; Hk=MA; HA=MK
ta có
HM song song ak(cmt)
M là trung điểm BC(gt)
-> H là trung điểm BA
-> Bh=HA=1/2 BA
mà HA=MK(cmt)
->BH=MK(1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến(gt)
-> AM=MB=MC
mà MA=HK(cmt)
-> HK=BM(2)
Từ (1) và (2)
-> BMKH là hình bình hành( các cạnh đối bằng nhau là hình bình hành)
Sorry nhe mình ko bít lm câu C
Nếu hai câu trên đúng like cho mình nha >_<