Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
góc A chung
AM=AN
=>ΔABM=ΔACN
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại I
=>I là trọng tam
=>H là trung điểm của BC
ΔABC cân tại A
mà AH là trung tuyến
nên AH vuông góc BC
a) Xét \(\Delta\)ABH và \(\Delta\)ACK, có:
góc BAC chung
AB=AC(\(\Delta\)ABC cân) }=> \(\Delta\)ABH và \(\Delta\)ACK(cạnh huyền-góc nhọn)
góc K= góc H(=90 độ)
Vậy \(\Delta\)ABH và \(\Delta\)ACK
b) Vì \(\Delta\)ABH và \(\Delta\)ACK(c/m trên)
=> AK=AH(2 cạnh tg ứng)
Ta có: AB= AK+BK
AC= AH+CH
Mà AB=AC(\(\Delta\)ABC cân)
AK=AH(c/m trên)
=> BK=CK
Vậy BK=CK
c) Xét \(\Delta\)ABC, có:
BH là đường cao thứ nhất
CK là đường cao thứ hai
Mà BH cắt Ck tại I
=> I là trực tâm \(\Delta\)ABC
=> AI là đường cao \(\Delta\)ABC
=> AI vuông góc BC
Vậy AI vuông góc BC
a: Xét ΔABE và ΔACF có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
b: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>D là trung điểm của BC
Xét ΔABC có AF/AB=AE/AC
nên EF//BC
+)Ta có:AC⊥BH(gt)
MF⊥BH(gt)
=>MF//AC
=>∠HCM=∠FMB(đồng vị)(1)
+)ΔABC cân tại A
=>∠DBM=∠HCM(2)
+)Từ (1) và (2)
=>∠DBM=∠FMB
+)Xét ΔDMB(∠BDM=90o) và ΔFMB(∠MFB=90o) có :
BM chung
∠DBM=∠FMB(cmt)
=>ΔDMB=ΔFMB (ch.gn)
Chúc bn học tốt
Ta có:AC⊥BH(gt)
MF⊥BH(gt)
=>MF//AC
=>∠HCM=∠FMB(đồng vị)(1)
+)ΔABC cân tại A
=>∠DBM=∠HCM(2)
+)Từ (1) và (2)
=>∠DBM=∠FMB
+)Xét ΔDMB(∠BDM=90o) và ΔFMB(∠MFB=90o) có :
BM chung
∠DBM=∠FMB(cmt)
=>ΔDMB=ΔFMB (ch.gn)
a)Vì Δ ABC cân tại A
=> góc ABC= góc ACB
Xét ΔKBC và ΔHCB, có:
góc KBC= góc HCB (góc ABC= góc ACB)
BC chung } => ΔKBCΔHCB (cạnh huyền-góc nhọn)
góc BKC= góc CHB
=>BH=CK( 2 cạnh tg ứng)
b) Xét ΔABC, có : đường cao BH và CK cắt nhau tại I
=> I là trự tâm của ΔABC
=> AI là đường cao ΔABC (1)
Mà ΔABC cân tại A (2)
Từ (1) và (2) => AI là phân giác goac BAC
c)Xét tứ giác BKHC, có :góc KBC = góc HCB ( góc ABC= góc ACB)
=> tứ giác BKHC là hình thanh cân
Vậy ....................