Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)
\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)
BH=HC(H là trung điểm BC)
=> Tam giác ABH = Tam giác ACH (cgc)
b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)
=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC
=> AH vuông góc với BC(đpcm)
A C B H E K 1 2
a) Xét t/giác ABH và t/giác ACH
c: AB = AC (gt)
BH = CH (gt)
AH: chung
=> t/giác ABH = t/giác ACH (c.c.c)
b) Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)
=> \(\widehat{AHB}=\widehat{AHC}=90^0\)
=> AH \(\perp\)BC
c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)
Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16
=> AH = 4 (cm)
d) Ta có: t/giác AHB = t/giác AHC (cmt)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)
Xét t/giác AHE và t/giác AHK
có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)
AH : chung
\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)
=> t/giác AHE = t/giác AHK (ch - gn)
=> HE = HK (2 cạnh t/ứng)
e) Ta có: t/giác AHE = t/giác AHK (cmt)
=> AE = AK (2 cạnh t/ứng)
=> t/giác AEK cân tại A
=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EK // BC
a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90
AB = AC do tg ABC cân tại A (gt)
^ABC = ^ACB do tg ABC ...
=> tg AHB = tg AHC (ch-gn)
b, tg ABC cân tại A (Gt) mà có AH là đường cao (1)
=> AH đồng thời là đường trung tuyến
=> H là trung điểm của BC
=> BH = 1/2BC = 6 cm
tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)
AB = 10 (gt)
=> AH = 8 do AH > 0
c, (1) => AH đồng thời là pg của ^BAC (đl)
=> ^CAH = ^BAH (đn)
có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)
=> ^BAH = ^AHE
=> tg AHE cân tại E (dh)
I A B C H E F
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △BAH và △CAH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △BAH = △CAH (ch-cgv)
b, Vì △BAH = △CAH (cmt)
=> BH = CH (2 cạnh tương ứng)
mà BH + CH = BC
=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 102 - 62 = 64
=> AH = 8 (cm)
c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)
Mà ∠HAC = ∠HAB (△CAH = △BAH)
=> ∠AHE = ∠HAB => ∠AHE = ∠HAE
=> △AHE cân tại E
d, Gọi { I } = EH ∩ BF
Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)
Mà ∠ABC = ∠ACB (cmt)
=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH
Mà EA = HE (△AHE cân tại E)
=> EA = BE
Xét △BAH có: E là trung điểm AB (EA = BE) => HE là đường trung tuyến
F là trung điểm AH => BF là đường trung tuyến
EH ∩ BF = { I }
=> I là trọng tâm của △BAH
\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)
Xét △BHI có: BI + HI > BH (bđt △)
\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)
\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)
\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)
c)\(\Delta\)BHA vuông tại A
=> ^ABH + ^BAH = 90 độ
mà ^BHE +^EHA = 90 độ
mà ^BAH = ^EHA ( vì \(\Delta\)AEH cân tại E)
=> ^ABH = ^BHE => \(\Delta\)BEH cân tại E
Gọi K là trung điểm BH => EK vuông BH
vì \(\Delta\)AEH cân => EF vuông AH
=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC
Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC
\(\Delta\)BFH vuông tại H => BF > BH = 1/2 BC
=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: góc EAH=góc CAH=góc EHA
=>ΔEAH cân tại E