Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\widehat{A}< 90^0\) và I là giao điểm của BD và CE
Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: AD=AE(hai cạnh tương ứng)
b) Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
hay IB=IC(hai cạnh bên)
Xét ΔABI và ΔACI có
AB=AC(ΔABC cân tại A)
BI=CI(cmt)
AI chung
Do đó: ΔABI=ΔACI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)
a: Sửa đề: góc A<90 độ
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc KBC=góc KCB
=>KB=KC
KB+KD=BD
KC+KE=EC
mà BD=CE và KB=KC
nên KD=KE
c: Xét ΔAEK vuông tại E và ΔADK vuông tại D có
AK chung
KE=KD
=>ΔAEK=ΔADK
=>góc EAK=góc DAK
=>AK là phân giác của góc BAC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
a, Vì tam giác ABC cân tại A nên AB=AC;B=C
Xét tam giác AEB và tam giác ADC có:
Góc A chung
AB=AC(cmt)
AD=AE(gt)
=> Tam giác ADC=tam giác AEB
=>BE=CD và góc ABE= góc ACD
b, Ta có
A+B+C=180(tổng 3 góc của tam giác)
B+C=180-A (1)
Và A+D+E=180
D+E=180-A (2)
Từ (1) và (2)=>B+C=D+E
Mà B=C và D=E
=>C=E
Mà 2 góc ở vị trí đồng vị
=>DE//BC
c, Ta có
B=C (cmt)
góc ABE= góc ACD(cm ở câu a)
Mà B-ABE=EBC
và C-ACD=DCB
=> góc EBC = góc DCB
=> tam giác KBC cân tại K
a/ Ta có AB=AC(gt)
Mà D và E là trung điểm của AB và AC
=> AD=BD=AE=EC
Xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
Góc A chung
AE=AD(cmt)
=> tam giác ABE= tam giác ACD(c-g-c)
b/ Ta có tam giác ABE= tam giác ACD(c-g-c)
=> góc ABE=góc ACD
=> góc KBC=góc KCB vì tam giác ABC cân tại A
Vậy tam giác KBC cân tại K
a) Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\) (gt)
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\widehat{ACE}\) (cạnh huyền - góc nhọn)
\(\Rightarrow AD=AE\) (hai cạnh tương ứng)
b) Xét \(\Delta AEI\) và \(\Delta ADI\) có:
\(AI\) là cạnh chung
AE = AD (cmt)
\(\widehat{AEI}=\widehat{ADI}=90^0\)
\(\Rightarrow\Delta AEI=\Delta ADI\) (cạnh huyền - góc nhọn)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\) (hai góc tương ứng)
\(\Rightarrow\) \(AI\) là tia phân giác của \(\widehat{DAE}\)
Hay \(AI\) là tia phân giác của \(\widehat{BAC}\)
a) Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔAEB=ΔADC(cạnh huyền-góc nhọn)
Suy ra: AE=AD(Hai cạnh tương ứng)