K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔAMC có 

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔAMB=ΔAMC

b: Xét ΔABH và ΔACK có

\(\widehat{BAH}\) chung

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

Do đó: ΔABH=ΔACK

Suy ra: BH=CK

1 tháng 3 2022

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

19 tháng 2 2020

a, xét tam giác AMB và tam giác AMC có: AM chung

AB = AC do tam giác ABC cân tại A (gt)

góc BAM = góc CAM do AM là pg của góc BAC (gt)

=> tam giác AMB = tam giác AMC (c-g-c)

b, xét tam giác BKC và tam giác CHB có :BC chung

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc BKC = góc CHB = 90

=> tam giác BKC = tam giác CHB (ch-gn)

=> BH = CK (đn)

3 tháng 9 2020

nhanh mik tích cho

3 tháng 9 2020

Trần Khắc Nguyên Bảo16 tháng 5 2016 lúc 21:32

1.Ta có : Tam giác ABC là tam giác vuông cân.

=>AB=AC

Mặt khác có:

Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K

Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]

=> BH=AK [đpcm]

Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì

Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]

AH=CK [ câu a ]

=>MH=MK

Ta có: [AM là đường cao]

Từ => HMK vuông

Kết hợp =>MHK là tam giác vuông cân.

13 tháng 12 2020

đề bài phần d ở góc dưới hình bên phải ah.

em là 1 học sinh trung bình phải không ? 

về chép 100 lần tính chất giao điểm của 3 đường cao đi

31 tháng 7 2019

A B C M H K

CM: Ta có: t/giác ABC cân tại A

AM là đường trung tuyến

=> AM cũng là đường cao (t/c t/giác cân)

Đường cao BH cắt đường cao AM tại K

=> K là trọng tâm của t/giác ABC

=> CK là đường cao thứ 3

=> CK \(\perp\)AB

31 tháng 7 2019

Xét ΔABM và ΔACM, có:

AB = AC (gt)

BM = CM ( do AM là đường trung tuyến)

AM: cạnh chung

Nên: ΔABM = ΔACM (c - c - c)

=> góc AMB = góc AMC ( 2 góc t/ư)

Mà: góc AMB + góc AMC = 180o ( 2 góc kề bù)

Do đó: Góc AMB = góc AMC = 90o

Xét ΔBKM và ΔCKM, có:

BM = CM ( do AM là đường trung tuyến)

góc KMB = góc KMC = 90o ( Hay góc AMB = góc AMC)

KM: cạnh chung

Nên: ΔBKM = ΔCKM ( c - g - c)

=> góc KBM = góc KCM ( 2 góc t/ư)

Gọi CN giao AB tại N

Xét ΔBNC và ΔCHB, có:

góc NCB = góc HBC (hay góc KBM = góc KCM)

BC: cạnh chung

góc NBC = góc HCB (do ΔABC cân tại A)

Do đó: ΔBNC = ΔCHB ( g - c - g)

Nên: NB = HC ( 2 cạnh t/ư)

Lại có: AN + NB = AB (gt)

AH + HC = AC (gt)

Mà: NB = HC (cmt)

AB = AC ( do ΔABC cân tại A)

Do đó: AN = AH

Xét ΔABH = ΔACN, có:

AH = AN (cmt)

góc A: chung

AB = AC ( do ΔABC cân tại A)

Nên: ΔABH = ΔACN ( c - g - c)

=> góc AHB = góc ANC ( 2 góc t/ư)

Mà: góc AHB = 90o (gt)

=> góc ANC = góc AHB = 90o

Vậy CN ⊥ AB

Hay: CK ⊥ AB (đpcm)